D - Modulo Matrix Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 1100

問題文

整数 N が与えられます。

以下の条件を満たすような N \times N 行列 a をどれか 1 つ構成してください。この問題の制約下で、必ず解が存在することが証明できます。

  • 1 \leq a_{i,j} \leq 10^{15}
  • a_{i,j} は相異なる整数である
  • ある正の整数 m が存在して、上下左右に隣接する 2 つの数 x,y をどこから取り出しても、{\rm max}(x,y){\rm min}(x,y) で割ったあまりは m となる

制約

  • 2 \leq N \leq 500

入力

入力は以下の形式で標準入力から与えられる。

N

出力

答えを以下の形式で出力せよ。

a_{1,1} ... a_{1,N}
:
a_{N,1} ... a_{N,N}

入力例 1

2

出力例 1

4 7
23 10
  • どの隣接した 2 つの数についても、大きい方の数を小さい数で割ったあまりが 3 となっています

Score : 1100 points

Problem Statement

You are given an integer N.

Construct any one N-by-N matrix a that satisfies the conditions below. It can be proved that a solution always exists under the constraints of this problem.

  • 1 \leq a_{i,j} \leq 10^{15}
  • a_{i,j} are pairwise distinct integers.
  • There exists a positive integer m such that the following holds: Let x and y be two elements of the matrix that are vertically or horizontally adjacent. Then, {\rm max}(x,y) {\rm mod} {\rm min}(x,y) is always m.

Constraints

  • 2 \leq N \leq 500

Input

Input is given from Standard Input in the following format:

N

Output

Print your solution in the following format:

a_{1,1} ... a_{1,N}
:
a_{N,1} ... a_{N,N}

Sample Input 1

2

Sample Output 1

4 7
23 10
  • For any two elements x and y that are vertically or horizontally adjacent, {\rm max}(x,y) {\rm mod} {\rm min}(x,y) is always 3.