Contest Duration: - (local time) (110 minutes) Back to Home

Time Limit: 2 sec / Memory Limit: 256 MB

### 問題文

これらの数に対して、高橋君は以下の操作を繰り返します。

• 偶奇が等しい 2 つの数 A_i,A_j を一組選び、それらを黒板から消す。
• その後、二つの数の和 A_i+A_j を黒板に書く。

### 制約

• 2 ≦ N ≦ 10^5
• 1 ≦ A_i ≦ 10^9
• A_i は整数

### 入力

N
A_1 A_2 … A_N


### 入力例 1

3
1 2 3


### 出力例 1

YES


• 黒板から 13 を消し、4 を書く。このとき、残る数は (2,4) である。
• 黒板から 24 を消し、6 を書く。このとき、残る数は 6 だけである。

### 入力例 2

5
1 2 3 4 5


### 出力例 2

NO


Score : 300 points

### Problem Statement

There are N integers written on a blackboard. The i-th integer is A_i.

Takahashi will repeatedly perform the following operation on these numbers:

• Select a pair of integers, A_i and A_j, that have the same parity (that is, both are even or both are odd) and erase them.
• Then, write a new integer on the blackboard that is equal to the sum of those integers, A_i+A_j.

Determine whether it is possible to have only one integer on the blackboard.

### Constraints

• 2 ≦ N ≦ 10^5
• 1 ≦ A_i ≦ 10^9
• A_i is an integer.

### Input

The input is given from Standard Input in the following format:

N
A_1 A_2 … A_N


### Output

If it is possible to have only one integer on the blackboard, print YES. Otherwise, print NO.

### Sample Input 1

3
1 2 3


### Sample Output 1

YES


It is possible to have only one integer on the blackboard, as follows:

• Erase 1 and 3 from the blackboard, then write 4. Now, there are two integers on the blackboard: 2 and 4.
• Erase 2 and 4 from the blackboard, then write 6. Now, there is only one integer on the blackboard: 6.

### Sample Input 2

5
1 2 3 4 5


### Sample Output 2

NO