C - log2(N)

Time Limit: 2 sec / Memory Limit: 1024 MiB

配点 : 200

問題文

正整数 N が与えられるので、 2^k \le N となる最大の整数 k を求めてください。

制約

  • N1 \le N \le 10^{18} を満たす整数である

入力

入力は以下の形式で標準入力から与えられる。

N

出力

答えを整数として出力せよ。


入力例 1

6

出力例 1

2
  • k=22^2=4 \le 6 を満たします。
  • k \ge 3 である全ての整数 k について 2^k > 6 となります。

以上より、答えは k=2 となります。


入力例 2

1

出力例 2

0

2^0=1 であることに注意してください。


入力例 3

1000000000000000000

出力例 3

59

入力が 32 bit 整数に収まらない場合があります。

Score : 200 points

Problem Statement

Given a positive integer N, find the maximum integer k such that 2^k \le N.

Constraints

  • N is an integer satisfying 1 \le N \le 10^{18}.

Input

Input is given from Standard Input in the following format:

N

Output

Print the answer as an integer.


Sample Input 1

6

Sample Output 1

2
  • k=2 satisfies 2^2=4 \le 6.
  • For every integer k such that k \ge 3, 2^k > 6 holds.

Therefore, the answer is k=2.


Sample Input 2

1

Sample Output 2

0

Note that 2^0=1.


Sample Input 3

1000000000000000000

Sample Output 3

59

The input value may not fit into a 32-bit integer.

D - Line Sensor

Time Limit: 2 sec / Memory Limit: 1024 MiB

配点 : 200

問題文

H マス、横 W マスのグリッドがあります。上から i 行目、左から j 列目のマスを (i,j) と表します。
各マスの状態は文字 C_{i,j} で表されます。C_{i,j}. ならば (i, j) には何も置かれておらず、 # ならば箱が 1 個置かれています。

1 \leq j \leq W を満たす整数 j に対して、整数 X_j を次のように定義します。

  • j 列目に置かれている箱の個数。言い換えると、C_{i,j}# であるような整数 i の個数。

X_1, X_2, \dots, X_W をすべて求めてください。

制約

  • 1 \leq H \leq 1000
  • 1 \leq W \leq 1000
  • H, W は整数
  • C_{i, j}. または #

入力

入力は以下の形式で標準入力から与えられる。

H W
C_{1,1}C_{1,2}\dots C_{1,W}
C_{2,1}C_{2,2}\dots C_{2,W}
\vdots
C_{H,1}C_{H,2}\dots C_{H,W}

出力

X_1, X_2, \dots, X_W を以下の形式に従って出力せよ。

X_1 X_2 \dots X_W

入力例 1

3 4
#..#
.#.#
.#.#

出力例 1

1 2 0 3

1 列目の箱が置かれているマスは (1, 1)1 ヵ所です。よって X_1 = 1 です。
2 列目の箱が置かれているマスは (2, 2), (3, 2)2 ヵ所です。よって X_2 = 2 です。
3 列目の箱が置かれているマスは存在しません。よって X_3 = 0 です。
4 列目の箱が置かれているマスは (1, 4), (2, 4), (3, 4)3 ヵ所です。よって X_4 = 3 です。
よって (X_1, X_2, X_3, X_4) = (1, 2, 0, 3) が答えとなります。


入力例 2

3 7
.......
.......
.......

出力例 2

0 0 0 0 0 0 0

箱が置かれているマスが存在しない場合もあります。


入力例 3

8 3
.#.
###
.#.
.#.
.##
..#
##.
.##

出力例 3

2 7 4

入力例 4

5 47
.#..#..#####..#...#..#####..#...#...###...#####
.#.#...#.......#.#...#......##..#..#...#..#....
.##....#####....#....#####..#.#.#..#......#####
.#.#...#........#....#......#..##..#...#..#....
.#..#..#####....#....#####..#...#...###...#####

出力例 4

0 5 1 2 2 0 0 5 3 3 3 3 0 0 1 1 3 1 1 0 0 5 3 3 3 3 0 0 5 1 1 1 5 0 0 3 2 2 2 2 0 0 5 3 3 3 3

Score : 200 points

Problem Statement

There is a grid with H rows from top to bottom and W columns from left to right. Let (i, j) denote the square at the i-th row from the top and j-th column from the left.
The squares are described by characters C_{i,j}. If C_{i,j} is ., (i, j) is empty; if it is #, (i, j) contains a box.

For integers j satisfying 1 \leq j \leq W, let the integer X_j defined as follows.

  • X_j is the number of boxes in the j-th column. In other words, X_j is the number of integers i such that C_{i,j} is #.

Find all of X_1, X_2, \dots, X_W.

Constraints

  • 1 \leq H \leq 1000
  • 1 \leq W \leq 1000
  • H and W are integers.
  • C_{i, j} is . or #.

Input

The input is given from Standard Input in the following format:

H W
C_{1,1}C_{1,2}\dots C_{1,W}
C_{2,1}C_{2,2}\dots C_{2,W}
\vdots
C_{H,1}C_{H,2}\dots C_{H,W}

Output

Print X_1, X_2, \dots, X_W in the following format:

X_1 X_2 \dots X_W

Sample Input 1

3 4
#..#
.#.#
.#.#

Sample Output 1

1 2 0 3

In the 1-st column, one square, (1, 1), contains a box. Thus, X_1 = 1.
In the 2-nd column, two squares, (2, 2) and (3, 2), contain a box. Thus, X_2 = 2.
In the 3-rd column, no squares contain a box. Thus, X_3 = 0.
In the 4-th column, three squares, (1, 4), (2, 4), and (3, 4), contain a box. Thus, X_4 = 3.
Therefore, the answer is (X_1, X_2, X_3, X_4) = (1, 2, 0, 3).


Sample Input 2

3 7
.......
.......
.......

Sample Output 2

0 0 0 0 0 0 0

There may be no square that contains a box.


Sample Input 3

8 3
.#.
###
.#.
.#.
.##
..#
##.
.##

Sample Output 3

2 7 4

Sample Input 4

5 47
.#..#..#####..#...#..#####..#...#...###...#####
.#.#...#.......#.#...#......##..#..#...#..#....
.##....#####....#....#####..#.#.#..#......#####
.#.#...#........#....#......#..##..#...#..#....
.#..#..#####....#....#####..#...#...###...#####

Sample Output 4

0 5 1 2 2 0 0 5 3 3 3 3 0 0 1 1 3 1 1 0 0 5 3 3 3 3 0 0 5 1 1 1 5 0 0 3 2 2 2 2 0 0 5 3 3 3 3
E - Merge Sequences

Time Limit: 2 sec / Memory Limit: 1024 MiB

配点 : 300

問題文

長さ N の狭義単調増加列 A=(A _ 1,A _ 2,\ldots,A _ N) と、長さ M の狭義単調増加列 B=(B _ 1,B _ 2,\ldots,B _ M) が与えられます。 ここで、すべての i,j\ (1\leq i\leq N,1\leq j\leq M) について A _ i\neq B _ j が成り立っています。

長さ N+M の狭義単調増加列 C=(C _ 1,C _ 2,\ldots,C _ {N+M}) を、次の操作を行った結果得られる列として定めます。

  • CAB を連結した列とする。厳密には、i=1,2,\ldots,N について C _ i=A _ i とし、i=N+1,N+2,\ldots,N+M について C _ i=B _ {i-N} とする。
  • C を昇順にソートする。

A _ 1,A _ 2,\ldots,A _ NB _ 1,B _ 2,\ldots,B _ M がそれぞれ C では何番目にあるか求めてください。 より厳密には、まず i=1,2,\ldots,N について C _ k=A _ i を満たす k を順に求めたのち、j=1,2,\ldots,M について C _ k=B _ j を満たす k を順に求めてください。

制約

  • 1\leq N,M\leq 10^5
  • 1\leq A _ 1\lt A _ 2\lt\cdots\lt A _ N\leq 10^9
  • 1\leq B _ 1\lt B _ 2\lt\cdots\lt B _ M\leq 10^9
  • すべての i,j\ (1\leq i\leq N,1\leq j\leq M) について A _ i\neq B _ j
  • 入力はすべて整数

入力

入力は以下の形式で標準入力から与えられる。

N M
A _ 1 A _ 2 \ldots A _ N
B _ 1 B _ 2 \ldots B _ M

出力

答えを 2 行で出力せよ。
1 行目には A _ 1,A _ 2,\ldots,A _ N がそれぞれ C では何番目にあるかを空白区切りで出力せよ。
2 行目には B _ 1,B _ 2,\ldots,B _ M がそれぞれ C では何番目にあるかを空白区切りで出力せよ。


入力例 1

4 3
3 14 15 92
6 53 58

出力例 1

1 3 4 7
2 5 6

C(3,6,14,15,53,58,92) となります。 A=(3,14,15,92) の要素はそれぞれ 1,3,4,7 番目にあり、B=(6,53,58) の要素はそれぞれ 2,5,6 番目にあります。


入力例 2

4 4
1 2 3 4
100 200 300 400

出力例 2

1 2 3 4
5 6 7 8

入力例 3

8 12
3 4 10 15 17 18 22 30
5 7 11 13 14 16 19 21 23 24 27 28

出力例 3

1 2 5 9 11 12 15 20
3 4 6 7 8 10 13 14 16 17 18 19

Score : 300 points

Problem Statement

You are given strictly increasing sequences of length N and M: A=(A _ 1,A _ 2,\ldots,A _ N) and B=(B _ 1,B _ 2,\ldots,B _ M). Here, A _ i\neq B _ j for every i and j (1\leq i\leq N,1\leq j\leq M).

Let C=(C _ 1,C _ 2,\ldots,C _ {N+M}) be a strictly increasing sequence of length N+M that results from the following procedure.

  • Let C be the concatenation of A and B. Formally, let C _ i=A _ i for i=1,2,\ldots,N, and C _ i=B _ {i-N} for i=N+1,N+2,\ldots,N+M.
  • Sort C in ascending order.

For each of A _ 1,A _ 2,\ldots,A _ N, B _ 1,B _ 2,\ldots,B _ M, find its position in C. More formally, for each i=1,2,\ldots,N, find k such that C _ k=A _ i, and for each j=1,2,\ldots,M, find k such that C _ k=B _ j.

Constraints

  • 1\leq N,M\leq 10^5
  • 1\leq A _ 1\lt A _ 2\lt\cdots\lt A _ N\leq 10^9
  • 1\leq B _ 1\lt B _ 2\lt\cdots\lt B _ M\leq 10^9
  • A _ i\neq B _ j for every i and j (1\leq i\leq N,1\leq j\leq M).
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

N M
A _ 1 A _ 2 \ldots A _ N
B _ 1 B _ 2 \ldots B _ M

Output

Print the answer in two lines.
The first line should contain the positions of A _ 1,A _ 2,\ldots,A _ N in C, with spaces in between.
The second line should contain the positions of B _ 1,B _ 2,\ldots,B _ M in C, with spaces in between.


Sample Input 1

4 3
3 14 15 92
6 53 58

Sample Output 1

1 3 4 7
2 5 6

C will be (3,6,14,15,53,58,92). Here, the 1-st, 3-rd, 4-th, 7-th elements are from A=(3,14,15,92), and the 2-nd, 5-th, 6-th elements are from B=(6,53,58).


Sample Input 2

4 4
1 2 3 4
100 200 300 400

Sample Output 2

1 2 3 4
5 6 7 8

Sample Input 3

8 12
3 4 10 15 17 18 22 30
5 7 11 13 14 16 19 21 23 24 27 28

Sample Output 3

1 2 5 9 11 12 15 20
3 4 6 7 8 10 13 14 16 17 18 19
F - Almost Equal

Time Limit: 2 sec / Memory Limit: 1024 MiB

配点 : 250

問題文

英小文字からなる長さ M の文字列 NS_1,S_2,\dots,S_N が与えられます。ここで、S_i は互いに異なります。

これらを並び替えた文字列の列 T_1,T_2,\dots,T_N であって、以下の条件を満たすものが存在するか判定してください。

  • 1 \le i \le N-1 を満たす全ての整数 i に対して、T_i1 文字だけ別の英小文字に変えて T_{i+1} にすることが出来る。

制約

  • 2 \le N \le 8
  • 1 \le M \le 5
  • S_i は英小文字からなる長さ M の文字列である。(1 \le i \le N)
  • S_i は互いに異なる。

入力

入力は以下の形式で標準入力から与えられる。

N M
S_1
S_2
\vdots
S_N

出力

問題文の条件を満たす列が存在するならば Yes を、そうでないならば No を出力せよ。


入力例 1

4 4
bbed
abcd
abed
fbed

出力例 1

Yes

abcd , abed , bbed , fbed の順に並び替えると条件を満たします。


入力例 2

2 5
abcde
abced

出力例 2

No

どのように並び替えても条件を満たすことは出来ません。


入力例 3

8 4
fast
face
cast
race
fact
rice
nice
case

出力例 3

Yes

Score : 250 points

Problem Statement

You are given N strings S_1,S_2,\dots,S_N, each of length M, consisting of lowercase English letter. Here, S_i are pairwise distinct.

Determine if one can rearrange these strings to obtain a new sequence of strings T_1,T_2,\dots,T_N such that:

  • for all integers i such that 1 \le i \le N-1, one can alter exactly one character of T_i to another lowercase English letter to make it equal to T_{i+1}.

Constraints

  • 2 \le N \le 8
  • 1 \le M \le 5
  • S_i is a string of length M consisting of lowercase English letters. (1 \le i \le N)
  • S_i are pairwise distinct.

Input

The input is given from Standard Input in the following format:

N M
S_1
S_2
\vdots
S_N

Output

Print Yes if one can obtain a conforming sequence; print No otherwise.


Sample Input 1

4 4
bbed
abcd
abed
fbed

Sample Output 1

Yes

One can rearrange them in this order: abcd, abed, bbed, fbed. This sequence satisfies the condition.


Sample Input 2

2 5
abcde
abced

Sample Output 2

No

No matter how the strings are rearranged, the condition is never satisfied.


Sample Input 3

8 4
fast
face
cast
race
fact
rice
nice
case

Sample Output 3

Yes
G - Distinct Trio

Time Limit: 2 sec / Memory Limit: 1024 MiB

配点 : 400

問題文

長さ N の数列 A=(A_1,A_2,\ldots,A_N) が与えられます。
以下の 2 条件をともに満たすような整数の組 (i,j,k) の個数を求めてください。

  • 1\leq i \lt j \lt k \leq N
  • A_i,A_j,A_k は相異なる

制約

  • 3 \leq N \leq 2\times 10^5
  • 1 \leq A_i \leq 2\times 10^5
  • 入力に含まれる値は全て整数である

入力

入力は以下の形式で標準入力から与えられる。

N
A_1 A_2 \ldots A_N

出力

答えを出力せよ。


入力例 1

4
3 1 4 1

出力例 1

2

条件を満たす整数の組 (i,j,k)(1,2,3),(1,3,4)2 つです。


入力例 2

10
99999 99998 99997 99996 99995 99994 99993 99992 99991 99990

出力例 2

120

入力例 3

15
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9

出力例 3

355

Score : 400 points

Problem Statement

You are given a sequence of length N: A=(A_1,A_2,\ldots,A_N).
Find the number of triples (i,j,k) that satisfy both of the following conditions.

  • 1\leq i \lt j \lt k \leq N
  • A_i, A_j, and A_k are distinct.

Constraints

  • 3 \leq N \leq 2\times 10^5
  • 1 \leq A_i \leq 2\times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
A_1 A_2 \ldots A_N

Output

Print the answer.


Sample Input 1

4
3 1 4 1

Sample Output 1

2

The two triples (i,j,k) satisfying the conditions are (1,2,3) and (1,3,4).


Sample Input 2

10
99999 99998 99997 99996 99995 99994 99993 99992 99991 99990

Sample Output 2

120

Sample Input 3

15
3 1 4 1 5 9 2 6 5 3 5 8 9 7 9

Sample Output 3

355