H - Distinct Adjacent Editorial by Mitsubachi


円環状の $i$ 人の場合の答えを $f \left( i \right)$ とします。
直線状の $i+1$ 人の場合の答えを考えると、これは $M \times \left( M-1 \right)^{i}$ です。このような渡し方のうち、円環の場合に条件を満たさないものは人 $i+1,1$ の条件のみ違反しています。ですので、この $2$ 人を同一視するとこれは $f \left( i \right)$ 通りです。

よって \(f \left( i+1 \right) = M \times \left( M-1 \right)^{i} - f \left( i \right)\) となり、この問題を解くことができました。

posted:
last update: