Time Limit: 2 sec / Memory Limit: 256 MB
配点 : 200 点
問題文
黒板に N 個の正の整数 A_1, ..., A_N が書かれています.
すぬけ君は,黒板に書かれている整数がすべて偶数であるとき,次の操作を行うことができます.
- 黒板に書かれている整数すべてを,2 で割ったものに置き換える.
すぬけ君は最大で何回操作を行うことができるかを求めてください.
制約
- 1 \leq N \leq 200
- 1 \leq A_i \leq 10^9
入力
入力は以下の形式で標準入力から与えられる。
N A_1 A_2 ... A_N
出力
すぬけ君は最大で何回操作を行うことができるかを出力せよ.
入力例 1
3 8 12 40
出力例 1
2
最初,黒板には [8, 12, 40] が書かれています. このとき,書かれている整数はすべて偶数なので,操作を行うことができます.
1 回操作を行った後,黒板には [4, 6, 20] が書かれています. 再び,書かれている整数はすべて偶数なので,操作を行うことができます.
2 回操作を行った後,黒板には [2, 3, 10] が書かれています. この時,奇数 3 が書かれているため,これ以上操作を行うことはできません.
よって,すぬけ君は最大で 2 回操作を行うことができます.
入力例 2
4 5 6 8 10
出力例 2
0
最初から奇数 5 が書かれているため,すぬけ君は一回も操作を行うことができません.
入力例 3
6 382253568 723152896 37802240 379425024 404894720 471526144
出力例 3
8
Score : 200 points
Problem Statement
There are N positive integers written on a blackboard: A_1, ..., A_N.
Snuke can perform the following operation when all integers on the blackboard are even:
- Replace each integer X on the blackboard by X divided by 2.
Find the maximum possible number of operations that Snuke can perform.
Constraints
- 1 \leq N \leq 200
- 1 \leq A_i \leq 10^9
Input
Input is given from Standard Input in the following format:
N A_1 A_2 ... A_N
Output
Print the maximum possible number of operations that Snuke can perform.
Sample Input 1
3 8 12 40
Sample Output 1
2
Initially, [8, 12, 40] are written on the blackboard. Since all those integers are even, Snuke can perform the operation.
After the operation is performed once, [4, 6, 20] are written on the blackboard. Since all those integers are again even, he can perform the operation.
After the operation is performed twice, [2, 3, 10] are written on the blackboard. Now, there is an odd number 3 on the blackboard, so he cannot perform the operation any more.
Thus, Snuke can perform the operation at most twice.
Sample Input 2
4 5 6 8 10
Sample Output 2
0
Since there is an odd number 5 on the blackboard already in the beginning, Snuke cannot perform the operation at all.
Sample Input 3
6 382253568 723152896 37802240 379425024 404894720 471526144
Sample Output 3
8