Submission #43233855


Source Code Expand

use proconio::input;
use segtree::*;

fn main() {
    input! {
        n: usize,
        k: usize,
        a: [usize; n],
    };
    let max_a_i = 300_000;
    let mut dp = Segtree::<Max<usize>>::new(max_a_i + 1);
    for a_i in a {
        let l = a_i.saturating_sub(k);
        let r = (a_i + k).min(max_a_i);
        dp.set(a_i, dp.prod(l, r + 1) + 1);
    }

    let ans = dp.all_prod();
    println!("{}", ans);
}

//https://github.com/rust-lang-ja/ac-library-rs

pub mod internal_bit {
    // Skipped:
    //
    // - `bsf` = `__builtin_ctz`: is equivalent to `{integer}::trailing_zeros`

    #[allow(dead_code)]
    pub(crate) fn ceil_pow2(n: u32) -> u32 {
        32 - n.saturating_sub(1).leading_zeros()
    }

    #[cfg(test)]
    mod tests {
        #[test]
        fn ceil_pow2() {
            // https://github.com/atcoder/ac-library/blob/2088c8e2431c3f4d29a2cfabc6529fe0a0586c48/test/unittest/bit_test.cpp
            assert_eq!(0, super::ceil_pow2(0));
            assert_eq!(0, super::ceil_pow2(1));
            assert_eq!(1, super::ceil_pow2(2));
            assert_eq!(2, super::ceil_pow2(3));
            assert_eq!(2, super::ceil_pow2(4));
            assert_eq!(3, super::ceil_pow2(5));
            assert_eq!(3, super::ceil_pow2(6));
            assert_eq!(3, super::ceil_pow2(7));
            assert_eq!(3, super::ceil_pow2(8));
            assert_eq!(4, super::ceil_pow2(9));
            assert_eq!(30, super::ceil_pow2(1 << 30));
            assert_eq!(31, super::ceil_pow2((1 << 30) + 1));

            assert_eq!(32, super::ceil_pow2(u32::max_value()));
        }
    }
}
pub mod internal_type_traits {
    use std::{
        fmt,
        iter::{Product, Sum},
        ops::{
            Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div,
            DivAssign, Mul, MulAssign, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub,
            SubAssign,
        },
    };

    // Skipped:
    //
    // - `is_signed_int_t<T>`   (probably won't be used directly in `modint.rs`)
    // - `is_unsigned_int_t<T>` (probably won't be used directly in `modint.rs`)
    // - `to_unsigned_t<T>`     (not used in `fenwicktree.rs`)

    /// Corresponds to `std::is_integral` in C++.
    // We will remove unnecessary bounds later.
    //
    // Maybe we should rename this to `PrimitiveInteger` or something, as it probably won't be used in the
    // same way as the original ACL.
    pub trait Integral:
        'static
        + Send
        + Sync
        + Copy
        + Ord
        + Not<Output = Self>
        + Add<Output = Self>
        + Sub<Output = Self>
        + Mul<Output = Self>
        + Div<Output = Self>
        + Rem<Output = Self>
        + AddAssign
        + SubAssign
        + MulAssign
        + DivAssign
        + RemAssign
        + Sum
        + Product
        + BitOr<Output = Self>
        + BitAnd<Output = Self>
        + BitXor<Output = Self>
        + BitOrAssign
        + BitAndAssign
        + BitXorAssign
        + Shl<Output = Self>
        + Shr<Output = Self>
        + ShlAssign
        + ShrAssign
        + fmt::Display
        + fmt::Debug
        + fmt::Binary
        + fmt::Octal
        + Zero
        + One
        + BoundedBelow
        + BoundedAbove
    {
    }

    /// Class that has additive identity element
    pub trait Zero {
        /// The additive identity element
        fn zero() -> Self;
    }

    /// Class that has multiplicative identity element
    pub trait One {
        /// The multiplicative identity element
        fn one() -> Self;
    }

    pub trait BoundedBelow {
        fn min_value() -> Self;
    }

    pub trait BoundedAbove {
        fn max_value() -> Self;
    }

    macro_rules! impl_integral {
    ($($ty:ty),*) => {
        $(
            impl Zero for $ty {
                #[inline]
                fn zero() -> Self {
                    0
                }
            }

            impl One for $ty {
                #[inline]
                fn one() -> Self {
                    1
                }
            }

            impl BoundedBelow for $ty {
                #[inline]
                fn min_value() -> Self {
                    Self::min_value()
                }
            }

            impl BoundedAbove for $ty {
                #[inline]
                fn max_value() -> Self {
                    Self::max_value()
                }
            }

            impl Integral for $ty {}
        )*
    };
}

    impl_integral!(i8, i16, i32, i64, i128, isize, u8, u16, u32, u64, u128, usize);
}
pub mod segtree {
    use crate::internal_bit::ceil_pow2;
    use crate::internal_type_traits::{BoundedAbove, BoundedBelow, One, Zero};
    use std::cmp::{max, min};
    use std::convert::Infallible;
    use std::marker::PhantomData;
    use std::ops::{Add, Mul};

    // TODO Should I split monoid-related traits to another module?
    pub trait Monoid {
        type S: Clone;
        fn identity() -> Self::S;
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S;
    }

    pub struct Max<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Max<S>
    where
        S: Copy + Ord + BoundedBelow,
    {
        type S = S;
        fn identity() -> Self::S {
            S::min_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            max(*a, *b)
        }
    }

    pub struct Min<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Min<S>
    where
        S: Copy + Ord + BoundedAbove,
    {
        type S = S;
        fn identity() -> Self::S {
            S::max_value()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            min(*a, *b)
        }
    }

    pub struct Additive<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Additive<S>
    where
        S: Copy + Add<Output = S> + Zero,
    {
        type S = S;
        fn identity() -> Self::S {
            S::zero()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a + *b
        }
    }

    pub struct Multiplicative<S>(Infallible, PhantomData<fn() -> S>);
    impl<S> Monoid for Multiplicative<S>
    where
        S: Copy + Mul<Output = S> + One,
    {
        type S = S;
        fn identity() -> Self::S {
            S::one()
        }
        fn binary_operation(a: &Self::S, b: &Self::S) -> Self::S {
            *a * *b
        }
    }

    impl<M: Monoid> Default for Segtree<M> {
        fn default() -> Self {
            Segtree::new(0)
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn new(n: usize) -> Segtree<M> {
            vec![M::identity(); n].into()
        }
    }
    impl<M: Monoid> From<Vec<M::S>> for Segtree<M> {
        fn from(v: Vec<M::S>) -> Self {
            let n = v.len();
            let log = ceil_pow2(n as u32) as usize;
            let size = 1 << log;
            let mut d = vec![M::identity(); 2 * size];
            d[size..(size + n)].clone_from_slice(&v);
            let mut ret = Segtree { n, size, log, d };
            for i in (1..size).rev() {
                ret.update(i);
            }
            ret
        }
    }
    impl<M: Monoid> Segtree<M> {
        pub fn set(&mut self, mut p: usize, x: M::S) {
            assert!(p < self.n);
            p += self.size;
            self.d[p] = x;
            for i in 1..=self.log {
                self.update(p >> i);
            }
        }

        pub fn get(&self, p: usize) -> M::S {
            assert!(p < self.n);
            self.d[p + self.size].clone()
        }

        pub fn prod(&self, mut l: usize, mut r: usize) -> M::S {
            assert!(l <= r && r <= self.n);
            let mut sml = M::identity();
            let mut smr = M::identity();
            l += self.size;
            r += self.size;

            while l < r {
                if l & 1 != 0 {
                    sml = M::binary_operation(&sml, &self.d[l]);
                    l += 1;
                }
                if r & 1 != 0 {
                    r -= 1;
                    smr = M::binary_operation(&self.d[r], &smr);
                }
                l >>= 1;
                r >>= 1;
            }

            M::binary_operation(&sml, &smr)
        }

        pub fn all_prod(&self) -> M::S {
            self.d[1].clone()
        }

        pub fn max_right<F>(&self, mut l: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(l <= self.n);
            assert!(f(&M::identity()));
            if l == self.n {
                return self.n;
            }
            l += self.size;
            let mut sm = M::identity();
            while {
                // do
                while l % 2 == 0 {
                    l >>= 1;
                }
                if !f(&M::binary_operation(&sm, &self.d[l])) {
                    while l < self.size {
                        l *= 2;
                        let res = M::binary_operation(&sm, &self.d[l]);
                        if f(&res) {
                            sm = res;
                            l += 1;
                        }
                    }
                    return l - self.size;
                }
                sm = M::binary_operation(&sm, &self.d[l]);
                l += 1;
                // while
                {
                    let l = l as isize;
                    (l & -l) != l
                }
            } {}
            self.n
        }

        pub fn min_left<F>(&self, mut r: usize, f: F) -> usize
        where
            F: Fn(&M::S) -> bool,
        {
            assert!(r <= self.n);
            assert!(f(&M::identity()));
            if r == 0 {
                return 0;
            }
            r += self.size;
            let mut sm = M::identity();
            while {
                // do
                r -= 1;
                while r > 1 && r % 2 == 1 {
                    r >>= 1;
                }
                if !f(&M::binary_operation(&self.d[r], &sm)) {
                    while r < self.size {
                        r = 2 * r + 1;
                        let res = M::binary_operation(&self.d[r], &sm);
                        if f(&res) {
                            sm = res;
                            r -= 1;
                        }
                    }
                    return r + 1 - self.size;
                }
                sm = M::binary_operation(&self.d[r], &sm);
                // while
                {
                    let r = r as isize;
                    (r & -r) != r
                }
            } {}
            0
        }

        fn update(&mut self, k: usize) {
            self.d[k] = M::binary_operation(&self.d[2 * k], &self.d[2 * k + 1]);
        }
    }

    // Maybe we can use this someday
    // ```
    // for i in 0..=self.log {
    //     for j in 0..1 << i {
    //         print!("{}\t", self.d[(1 << i) + j]);
    //     }
    //     println!();
    // }
    // ```

    pub struct Segtree<M>
    where
        M: Monoid,
    {
        // variable name is _n in original library
        n: usize,
        size: usize,
        log: usize,
        d: Vec<M::S>,
    }

    #[cfg(test)]
    mod tests {
        use crate::segtree::Max;
        use crate::Segtree;

        #[test]
        fn test_max_segtree() {
            let base = vec![3, 1, 4, 1, 5, 9, 2, 6, 5, 3];
            let n = base.len();
            let segtree: Segtree<Max<_>> = base.clone().into();
            check_segtree(&base, &segtree);

            let mut segtree = Segtree::<Max<_>>::new(n);
            let mut internal = vec![i32::min_value(); n];
            for i in 0..n {
                segtree.set(i, base[i]);
                internal[i] = base[i];
                check_segtree(&internal, &segtree);
            }

            segtree.set(6, 5);
            internal[6] = 5;
            check_segtree(&internal, &segtree);

            segtree.set(6, 0);
            internal[6] = 0;
            check_segtree(&internal, &segtree);
        }

        //noinspection DuplicatedCode
        fn check_segtree(base: &[i32], segtree: &Segtree<Max<i32>>) {
            let n = base.len();
            #[allow(clippy::needless_range_loop)]
            for i in 0..n {
                assert_eq!(segtree.get(i), base[i]);
            }
            for i in 0..=n {
                for j in i..=n {
                    assert_eq!(
                        segtree.prod(i, j),
                        base[i..j].iter().max().copied().unwrap_or(i32::min_value())
                    );
                }
            }
            assert_eq!(
                segtree.all_prod(),
                base.iter().max().copied().unwrap_or(i32::min_value())
            );
            for k in 0..=10 {
                let f = |&x: &i32| x < k;
                for i in 0..=n {
                    assert_eq!(
                        Some(segtree.max_right(i, f)),
                        (i..=n)
                            .filter(|&j| f(&base[i..j]
                                .iter()
                                .max()
                                .copied()
                                .unwrap_or(i32::min_value())))
                            .max()
                    );
                }
                for j in 0..=n {
                    assert_eq!(
                        Some(segtree.min_left(j, f)),
                        (0..=j)
                            .filter(|&i| f(&base[i..j]
                                .iter()
                                .max()
                                .copied()
                                .unwrap_or(i32::min_value())))
                            .min()
                    );
                }
            }
        }
    }
}

Submission Info

Submission Time
Task D - Flat Subsequence
User bouzuya
Language Rust (1.42.0)
Score 400
Code Size 13849 Byte
Status AC
Exec Time 84 ms
Memory 12900 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 400 / 400
Status
AC × 1
AC × 31
Set Name Test Cases
Sample example0.txt
All 000.txt, 001.txt, 002.txt, 003.txt, 004.txt, 005.txt, 006.txt, 007.txt, 008.txt, 009.txt, 010.txt, 011.txt, 012.txt, 013.txt, 014.txt, 015.txt, 016.txt, 017.txt, 018.txt, 019.txt, 020.txt, 021.txt, 022.txt, 023.txt, 024.txt, 025.txt, 026.txt, 027.txt, 028.txt, 029.txt, example0.txt
Case Name Status Exec Time Memory
000.txt AC 78 ms 12104 KiB
001.txt AC 27 ms 9236 KiB
002.txt AC 31 ms 9600 KiB
003.txt AC 50 ms 10784 KiB
004.txt AC 27 ms 9268 KiB
005.txt AC 39 ms 10632 KiB
006.txt AC 53 ms 11024 KiB
007.txt AC 68 ms 12080 KiB
008.txt AC 31 ms 10224 KiB
009.txt AC 34 ms 9564 KiB
010.txt AC 73 ms 12700 KiB
011.txt AC 84 ms 12792 KiB
012.txt AC 77 ms 12764 KiB
013.txt AC 79 ms 12824 KiB
014.txt AC 80 ms 12804 KiB
015.txt AC 75 ms 12776 KiB
016.txt AC 80 ms 12768 KiB
017.txt AC 82 ms 12900 KiB
018.txt AC 78 ms 12884 KiB
019.txt AC 81 ms 12772 KiB
020.txt AC 64 ms 12788 KiB
021.txt AC 74 ms 12792 KiB
022.txt AC 72 ms 12816 KiB
023.txt AC 73 ms 12856 KiB
024.txt AC 78 ms 12708 KiB
025.txt AC 65 ms 12728 KiB
026.txt AC 66 ms 12724 KiB
027.txt AC 79 ms 12900 KiB
028.txt AC 54 ms 12864 KiB
029.txt AC 57 ms 12788 KiB
example0.txt AC 13 ms 8520 KiB