Submission #68525961


Source Code Expand

#pragma GCC optimize "-O3,omit-frame-pointer,inline,unroll-all-loops,fast-math"

#include <bits/stdc++.h>

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;

// ===== MACROS =====
#define FOR(i, n, m) for (int i = n; i < (int)m; ++i)
#define REP(i, n) FOR (i, 0, n)
#define REP_1(i, n) for (int i = 1; i <= (int)n; ++i)
#define RFOR(i, n, m) for (int i = (int)n - 1; i >= (int)m; --i)
#define RREP(i, n) RFOR(i, n, 0)
#define RREP_1(i, n) for (int i = (int)n; i >= 1; --i)

#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define SIZE(v) (int)v.size()
#define EMPTY(v) v.empty()
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(RALL(v))
#define REVERSE(v) reverse(ALL(v))
#define UNIQUE(v) (SORT(v), v.erase(unique(ALL(v)), v.end()))

#define PB push_back
#define EB emplace_back
#define MP make_pair

// ===== UTILITY MACROS =====
#define YES() cout << "YES\n"
#define NO() cout << "NO\n"
#define Yes() cout << "Yes\n"
#define No() cout << "No\n"
#define YESNO(cond) cout << ((cond) ? "YES" : "NO") << '\n'
#define YesNo(cond) cout << ((cond) ? "Yes" : "No") << '\n'

#define IN(x, a, b) ((a) <= (x) && (x) < (b))
#define BETWEEN(x, a, b) ((a) <= (x) && (x) <= (b))

#define FASTIO() \
    ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define PRECISION(n) cout << fixed << setprecision(n)

// ===== TYPE ALIASES =====
using P = pair<int, int>;
using ll = long long;
using ull = unsigned long long;
using ld = long double;

template <class T>
using min_queue = priority_queue<T, vector<T>, greater<T>>;
template <class T>
using max_queue = priority_queue<T>;

struct uint64_hash {
    static inline uint64_t rotr(uint64_t x, unsigned k) {
        return (x >> k) | (x << (8U * sizeof(uint64_t) - k));
    }
    static inline uint64_t hash_int(uint64_t x) noexcept {
        auto h1 = x * (uint64_t)(0xA24BAED4963EE407);
        auto h2 = rotr(x, 32U) * (uint64_t)(0x9FB21C651E98DF25);
        auto h = rotr(h1 + h2, 32U);
        return h;
    }
    size_t operator()(uint64_t x) const {
        static const uint64_t FIXED_RANDOM =
            std::chrono::steady_clock::now().time_since_epoch().count();
        return hash_int(x + FIXED_RANDOM);
    }
};

template <typename K, typename V, typename Hash = uint64_hash>
using hash_map = __gnu_pbds::gp_hash_table<K, V, Hash>;
template <typename K, typename Hash = uint64_hash>
using hash_set = hash_map<K, __gnu_pbds::null_type, Hash>;

template <typename T, size_t MAXSIZE>
struct fast_queue {
    T data[MAXSIZE];
    size_t head, tail;
    fast_queue() : head(0), tail(0) {}
    inline void push(const T &x) { data[tail++] = x; }
    inline void emplace(T &&x) { data[tail++] = std::move(x); }
    inline T front() const { return data[head]; }
    inline void pop() { head++; }
    inline bool empty() const { return head == tail; }
    inline size_t size() const { return tail - head; }
    inline void clear() { head = tail = 0; }
    inline T *begin() { return data + head; }
    inline T *end() { return data + tail; }
    inline const T *begin() const { return data + head; }
    inline const T *end() const { return data + tail; }
};

template <typename K, typename V, size_t MAXSIZE>
struct fast_map {
    struct Entry {
        K key;
        V value;
        bool used;
        Entry() : used(false) {}
    };
    vector<Entry> data;
    size_t element_count;

    fast_map() : data(MAXSIZE), element_count(0) {}

    inline size_t hash(const K &key) const {
        return std::hash<K>{}(key) % data.size();
    }

    inline size_t find_pos(const K &key) const {
        size_t pos = hash(key);
        while (data[pos].used && data[pos].key != key) {
            pos = (pos + 1) % MAXSIZE;
        }
        return pos;
    }

    inline V &operator[](const K &key) {
        size_t pos = find_pos(key);
        if (!data[pos].used) {
            data[pos].key = key;
            data[pos].value = V{};
            data[pos].used = true;
            element_count++;
        }
        return data[pos].value;
    }

    inline const V &at(const K &key) const {
        size_t pos = find_pos(key);
        if (!data[pos].used || data[pos].key != key) {
            throw std::out_of_range("FastHashTable: key not found");
        }
        return data[pos].value;
    }

    inline V &at(const K &key) {
        size_t pos = find_pos(key);
        if (!data[pos].used || data[pos].key != key) {
            throw std::out_of_range("FastHashTable: key not found");
        }
        return data[pos].value;
    }

    inline size_t count(const K &key) const {
        size_t pos = find_pos(key);
        return (data[pos].used && data[pos].key == key) ? 1 : 0;
    }

    inline bool erase(const K &key) {
        size_t pos = find_pos(key);
        if (data[pos].used && data[pos].key == key) {
            data[pos].used = false;
            element_count--;
            return true;
        }
        return false;
    }

    inline size_t size() const { return element_count; }
    inline bool empty() const { return element_count == 0; }

    inline bool find(const K &key, V &result) const {
        if (count(key)) {
            result = at(key);
            return true;
        }
        return false;
    }

    inline bool contains(const K &key) const { return count(key) > 0; }

    inline void clear() {
        for (size_t i = 0; i < data.size(); i++) {
            data[i].used = false;
        }
        element_count = 0;
    }

    struct iterator {
        Entry *ptr;
        Entry *end_ptr;

        iterator(Entry *p, Entry *e) : ptr(p), end_ptr(e) {
            while (ptr < end_ptr && !ptr->used) ptr++;
        }

        pair<K, V> operator*() const { return {ptr->key, ptr->value}; }
        iterator &operator++() {
            do {
                ptr++;
            } while (ptr < end_ptr && !ptr->used);
            return *this;
        }
        bool operator!=(const iterator &other) const {
            return ptr != other.ptr;
        }
        bool operator==(const iterator &other) const {
            return ptr == other.ptr;
        }
    };

    iterator begin() {
        return iterator(data.data(), data.data() + data.size());
    }
    iterator end() {
        return iterator(data.data() + data.size(), data.data() + data.size());
    }
};

// ===== NUMBER SORTING =====
inline void radix_sort_impl(vector<int> &arr) {
    constexpr int BITS = 8;
    constexpr int BUCKETS = 1 << BITS;
    constexpr int MASK = BUCKETS - 1;

    vector<int> temp(arr.size());
    vector<int> count(BUCKETS);

    for (int shift = 0; shift < 32; shift += BITS) {
        fill(count.begin(), count.end(), 0);
        for (int x : arr) count[(x >> shift) & MASK]++;
        for (int i = 1; i < BUCKETS; i++) count[i] += count[i - 1];
        for (int i = arr.size() - 1; i >= 0; i--) {
            int x = arr[i];
            temp[--count[(x >> shift) & MASK]] = x;
        }
        arr = temp;
    }
}

inline void counting_sort_impl(vector<int> &arr, int max_val) {
    vector<int> count(max_val + 1, 0);
    for (auto x : arr) count[x]++;

    int pos = 0;
    for (int i = 0; i <= max_val; i++) {
        while (count[i]--) {
            arr[pos++] = i;
        }
    }
}

void fast_sort(vector<int> &arr) {
    if (arr.empty()) return;
    int max_val = *max_element(arr.begin(), arr.end());
    if (max_val <= (int)arr.size()) {
        counting_sort_impl(arr, max_val);
    } else {
        radix_sort_impl(arr);
    }
}

// ===== CONSTANTS =====
constexpr ll INF = 1000000000;
constexpr ll INFL = (ll)1000000000000001000LL;
constexpr ll MOD = 998244353;
constexpr ld PI = 3.141592653589793238462643383279;
constexpr ld EPS = 1e-9;

// ===== DIRECTIONS =====
constexpr int dx4[] = {0, 1, 0, -1};
constexpr int dy4[] = {1, 0, -1, 0};
constexpr int dx8[] = {0, 1, 1, 1, 0, -1, -1, -1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1};

// ===== DEBUG MACROS =====
const std::string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m",
                  BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m",
                  NORMAL_CROSSED = "\033[0;9;37m",
                  RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";

#ifdef LOCAL
#define dbg(x)                                                         \
    std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x)      \
              << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ \
              << COLOR_RESET << std::endl
#define dbgif(cond, x)                                                      \
    ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) \
                        << NORMAL_FAINT << " (L" << __LINE__ << ") "        \
                        << __FILE__ << COLOR_RESET << std::endl             \
            : std::cerr)
#define msg(s)                                                          \
    std::cerr << BRIGHT_GREEN << s << NORMAL_FAINT << " (L" << __LINE__ \
              << ") " << __FILE__ << COLOR_RESET << std::endl
#else
#define dbg(x) 0
#define dbgif(cond, x) 0
#define msg(s) 0
#endif

// ===== PAIR OPERATORS =====
template <class T1, class T2>
std::pair<T1, T2> operator+(const std::pair<T1, T2> &l,
                            const std::pair<T1, T2> &r) {
    return std::make_pair(l.first + r.first, l.second + r.second);
}
template <class T1, class T2>
std::pair<T1, T2> operator-(const std::pair<T1, T2> &l,
                            const std::pair<T1, T2> &r) {
    return std::make_pair(l.first - r.first, l.second - r.second);
}

// ===== I/O OPERATORS =====
template <class IStream, class T>
IStream &operator>>(IStream &is, std::vector<T> &vec) {
    for (auto &v : vec) is >> v;
    return is;
}
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz>
OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH>
OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U>
OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U>
OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV>
OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH>
OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T>
OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::vector<T> &vec) {
    os << '[';
    for (auto v : vec) os << v << ',';
    os << ']';
    return os;
}
template <class OStream, class T, size_t sz>
OStream &operator<<(OStream &os, const std::array<T, sz> &arr) {
    os << '[';
    for (auto v : arr) os << v << ',';
    os << ']';
    return os;
}
template <class... T>
std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) {
    std::apply([&is](auto &&...args) { ((is >> args), ...); }, tpl);
    return is;
}
template <class OStream, class... T>
OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) {
    os << '(';
    std::apply([&os](auto &&...args) { ((os << args << ','), ...); }, tpl);
    return os << ')';
}
template <class OStream, class T, class TH>
OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) {
    os << '{';
    for (auto v : vec) os << v << ',';
    os << '}';
    return os;
}
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::deque<T> &vec) {
    os << "deq[";
    for (auto v : vec) os << v << ',';
    os << ']';
    return os;
}
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::set<T> &vec) {
    os << '{';
    for (auto v : vec) os << v << ',';
    os << '}';
    return os;
}
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::multiset<T> &vec) {
    os << '{';
    for (auto v : vec) os << v << ',';
    os << '}';
    return os;
}
template <class OStream, class T>
OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) {
    os << '{';
    for (auto v : vec) os << v << ',';
    os << '}';
    return os;
}
template <class OStream, class T, class U>
OStream &operator<<(OStream &os, const std::pair<T, U> &pa) {
    return os << '(' << pa.first << ',' << pa.second << ')';
}
template <class OStream, class TK, class TV>
OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) {
    os << '{';
    for (auto v : mp) os << v.first << "=>" << v.second << ',';
    os << '}';
    return os;
}
template <class OStream, class TK, class TV, class TH>
OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) {
    os << '{';
    for (auto v : mp) os << v.first << "=>" << v.second << ',';
    os << '}';
    return os;
}

// ===== BIT OPERATIONS =====
__attribute__((always_inline)) inline ull bit(ull x) { return 1ull << x; }
__attribute__((always_inline)) inline void setbit(ull &a, int b,
                                                  ull value = 1) {
    a = (a & ~bit(b)) | (value << b);
}
__attribute__((always_inline)) inline ull getbit(ull a, int b) {
    return (a >> b) & 1;
}
__attribute__((always_inline)) inline ull lsb(ull a) {
    return __builtin_ctzll(a);
}
__attribute__((always_inline)) inline int msb(uint64_t bb) {
    return __builtin_clzll(bb) ^ 63;
}

// ===== CHMAX/CHMIN =====
template <typename T>
inline bool chmax(T &a, T b) {
    return a < b && (a = b, true);
}
template <typename T>
inline bool chmin(T &a, T b) {
    return a > b && (a = b, true);
}

// ===== TIMER =====
struct Timer {
    chrono::time_point<chrono::high_resolution_clock> start_time;
    chrono::duration<double> elapsed;
    Timer() : elapsed(0) {}
    double elapsed_seconds() const {
        return elapsed.count() +
               chrono::duration<double>(chrono::high_resolution_clock::now() -
                                        start_time)
                   .count();
    }
    void reset() { elapsed = chrono::duration<double>::zero(); }
};

// ===== RANDOM NUMBER GENERATOR =====
struct RNG {
    uint64_t s[2];
    RNG(ull seed) { reset(seed); }
    RNG() { reset(0); }
    using result_type = int;
    static __attribute__((always_inline)) inline uint64_t rotl(const uint64_t x,
                                                               int k) {
        return (x << k) | (x >> (64 - k));
    }
    inline void reset(ull seed) {
        struct splitmix64_state {
            ull s;
            ull splitmix64() {
                ull result = (s += 0x9E3779B97f4A7C15);
                result = (result ^ (result >> 30)) * 0xBF58476D1CE4E5B9;
                result = (result ^ (result >> 27)) * 0x94D049BB133111EB;
                return result ^ (result >> 31);
            }
        };
        splitmix64_state sm{seed};
        s[0] = sm.splitmix64();
        s[1] = sm.splitmix64();
    }
    ull next() {
        const uint64_t s0 = s[0];
        uint64_t s1 = s[1];
        const uint64_t result = rotl(s0 * 5, 7) * 9;
        s1 ^= s0;
        s[0] = rotl(s0, 24) ^ s1 ^ (s1 << 16);
        s[1] = rotl(s1, 37);
        return result;
    }
    inline int operator()() { return next(); }
    inline int operator()(int r) { return next() % r; }
    inline int operator()(int l, int r) { return l + (next() % (r - l + 1)); }
    inline double d() { return (double)operator()() / 4294967296.0; }
    inline double d(double l, double r) { return l + d() * (r - l); }
    template <class T>
    void shuffle(vector<T> &v) {
        int sz = v.size();
        for (int i = sz; i > 1; i--) {
            int p = operator()(i);
            swap(v[i - 1], v[p]);
        }
    }
    template <class T>
    inline T sample(vector<T> const &v) {
        return v[operator()(v.size())];
    }
} rng;

// ===== COMBINATORICS =====
struct modint {
    ll n;

   public:
    modint() : n(0) {}
    modint(ll x) : n(((x % MOD) + MOD) % MOD) {}

    ll val() const { return n; }

    modint pow(ll m) const {
        modint r = 1, a = *this;
        while (m > 0) {
            if (m & 1) r *= a;
            a *= a;
            m >>= 1;
        }
        return r;
    }

    modint inv() const { return pow(MOD - 2); }

    modint &operator++() { return *this += 1; }
    modint &operator--() { return *this -= 1; }
    modint operator++(int) {
        modint ret = *this;
        ++*this;
        return ret;
    }
    modint operator--(int) {
        modint ret = *this;
        --*this;
        return ret;
    }

    modint operator+() const { return *this; }
    modint operator-() const { return modint() - *this; }

    friend bool operator==(const modint &lhs, const modint &rhs) {
        return lhs.n == rhs.n;
    }
    friend bool operator!=(const modint &lhs, const modint &rhs) {
        return lhs.n != rhs.n;
    }
    friend bool operator<(const modint &lhs, const modint &rhs) {
        return lhs.n < rhs.n;
    }
    friend bool operator<=(const modint &lhs, const modint &rhs) {
        return lhs.n <= rhs.n;
    }
    friend bool operator>(const modint &lhs, const modint &rhs) {
        return lhs.n > rhs.n;
    }
    friend bool operator>=(const modint &lhs, const modint &rhs) {
        return lhs.n >= rhs.n;
    }

    friend modint &operator+=(modint &lhs, const modint &rhs) {
        lhs.n += rhs.n;
        if (lhs.n >= MOD) lhs.n -= MOD;
        return lhs;
    }
    friend modint &operator-=(modint &lhs, const modint &rhs) {
        lhs.n -= rhs.n;
        if (lhs.n < 0) lhs.n += MOD;
        return lhs;
    }
    friend modint &operator*=(modint &lhs, const modint &rhs) {
        lhs.n = (lhs.n * rhs.n) % MOD;
        return lhs;
    }
    friend modint &operator/=(modint &lhs, const modint &rhs) {
        return lhs *= rhs.inv();
    }

    friend modint operator+(const modint &lhs, const modint &rhs) {
        modint res = lhs;
        res += rhs;
        return res;
    }
    friend modint operator-(const modint &lhs, const modint &rhs) {
        modint res = lhs;
        res -= rhs;
        return res;
    }
    friend modint operator*(const modint &lhs, const modint &rhs) {
        modint res = lhs;
        res *= rhs;
        return res;
    }
    friend modint operator/(const modint &lhs, const modint &rhs) {
        modint res = lhs;
        res /= rhs;
        return res;
    }

    friend istream &operator>>(istream &is, modint &m) {
        ll x;
        is >> x;
        m = modint(x);
        return is;
    }
    friend ostream &operator<<(ostream &os, const modint &m) {
        return os << m.n;
    }
};

using mi = modint;

struct Comb {
    vector<mi> fact, inv_fact;
    Comb(int n) : fact(n + 1), inv_fact(n + 1) {
        fact[0] = 1;
        for (int i = 1; i <= n; i++) {
            fact[i] = fact[i - 1] * i;
        }

        inv_fact[n] = fact[n].inv();
        for (int i = n - 1; i >= 0; i--) {
            inv_fact[i] = inv_fact[i + 1] * (i + 1);
        }
    }
    mi C(int n, int k) {
        if (n < 0 || k < 0 || n < k) return 0;
        return fact[n] * inv_fact[k] * inv_fact[n - k];
    }

    mi P(int n, int k) {
        if (n < 0 || k < 0 || n < k) return 0;
        return fact[n] * inv_fact[n - k];
    }

    mi H(int n, int k) {
        if (n < 0 || k < 0) return 0;
        return C(n + k - 1, k);
    }

    // n! / (k1! * k2! * ... * kn!)
    mi multinomial(int n, const vector<int> &ks) {
        mi res = fact[n];
        for (int k : ks) {
            if (k < 0 || k > n) return 0;
            res *= inv_fact[k];
        }
        return res;
    }

    // 1 / (n + 1) * C(2n, n)
    mi catalan(int n) { return C(2 * n, n) * mi(n + 1).inv(); }
};

// ===== DATA STRUCTURES =====
struct IndexSet {
    vector<int> que;
    vector<int> pos;

    IndexSet(int n) : pos(n, -1) {}

    void add(int v) {
        pos[v] = que.size();
        que.push_back(v);
    }

    void remove(int v) {
        int p = pos[v];
        int b = que.back();
        que[p] = b;
        que.pop_back();
        pos[b] = p;
        pos[v] = -1;
    }

    bool contains(int v) const { return pos[v] != -1; }

    int size() const { return que.size(); }
};

struct UnionFind {
    vector<int> data;
    vector<int> a;
    vector<int> b;

    UnionFind() = default;

    explicit UnionFind(size_t sz) : data(sz, -1), a(sz, 0), b(sz, 0) {}

    int unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return false;
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y];
        data[y] = x;
        a[x] += a[y];
        b[x] += b[y];
        int ret = min(a[x], b[x]);
        a[x] -= ret;
        b[x] -= ret;
        return ret;
    }

    int find(int k) {
        if (data[k] < 0) return (k);
        return data[k] = find(data[k]);
    }

    int size(int k) { return -data[find(k)]; }

    bool same(int x, int y) { return find(x) == find(y); }

    vector<vector<int>> groups() {
        int n = (int)data.size();
        vector<vector<int>> ret(n);
        for (int i = 0; i < n; ++i) {
            ret[find(i)].emplace_back(i);
        }
        ret.erase(remove_if(begin(ret), end(ret),
                            [&](const vector<int> &v) { return v.empty(); }),
                  end(ret));
        return ret;
    }
};

template <typename Monoid>
struct SegmentTree {
    using S = typename Monoid::S;

   private:
    int n, sz;

    vector<S> seg;

    Monoid m;

   public:
    SegmentTree() = default;

    explicit SegmentTree(Monoid m, int n) : m(m), n(n) {
        sz = 1;
        while (sz < n) sz <<= 1;
        seg.assign(2 * sz, m.e());
    }

    explicit SegmentTree(Monoid m, const vector<S> &v)
        : SegmentTree(m, (int)v.size()) {
        build(v);
    }

    void build(const vector<S> &v) {
        assert(n == (int)v.size());
        for (int k = 0; k < n; k++) seg[k + sz] = v[k];
        for (int k = sz - 1; k > 0; k--) {
            seg[k] = m.op(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    void set(int k, const S &x) {
        k += sz;
        seg[k] = x;
        while (k >>= 1) {
            seg[k] = m.op(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    S get(int k) const { return seg[k + sz]; }

    S operator[](int k) const { return get(k); }

    void apply(int k, const S &x) {
        k += sz;
        seg[k] = m.op(seg[k], x);
        while (k >>= 1) {
            seg[k] = m.op(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    S prod(int l, int r) const {
        if (l >= r) return m.e();
        S L = m.e(), R = m.e();
        for (l += sz, r += sz; l < r; l >>= 1, r >>= 1) {
            if (l & 1) L = m.op(L, seg[l++]);
            if (r & 1) R = m.op(seg[--r], R);
        }
        return m.op(L, R);
    }

    S all_prod() const { return seg[1]; }

    template <typename C>
    int find_first(int l, const C &check) const {
        if (l >= n) return n;
        l += sz;
        S sum = m.e();
        do {
            while ((l & 1) == 0) l >>= 1;
            if (check(m.op(sum, seg[l]))) {
                while (l < sz) {
                    l <<= 1;
                    auto nxt = m.op(sum, seg[l]);
                    if (not check(nxt)) {
                        sum = nxt;
                        l++;
                    }
                }
                return l + 1 - sz;
            }
            sum = m.op(sum, seg[l++]);
        } while ((l & -l) != l);
        return n;
    }

    template <typename C>
    int find_last(int r, const C &check) const {
        if (r <= 0) return -1;
        r += sz;
        S sum = m.e();
        do {
            r--;
            while (r > 1 and (r & 1)) r >>= 1;
            if (check(m.op(seg[r], sum))) {
                while (r < sz) {
                    r = (r << 1) + 1;
                    auto nxt = m.op(seg[r], sum);
                    if (not check(nxt)) {
                        sum = nxt;
                        r--;
                    }
                }
                return r - sz;
            }
            sum = m.op(seg[r], sum);
        } while ((r & -r) != r);
        return -1;
    }
};

struct MinIdxMonoid {
    using S = pair<ll, int>;
    static constexpr S op(const S &a, const S &b) {
        return a.first <= b.first ? a : b;
    }
    static constexpr S e() { return {INFL, -1}; }
};

struct MaxIdxMonoid {
    using S = pair<ll, int>;
    static constexpr S op(const S &a, const S &b) {
        return a.first >= b.first ? a : b;
    }
    static constexpr S e() { return {-INFL, -1}; }
};

template <int N>
struct MatrixMonoid {
    using S = array<array<mi, N>, N>;
    static constexpr S op(const S &a, const S &b) {
        S c = {};
        REP (i, N)
            REP (j, N)
                REP (k, N) {
                    c[i][j] += c[i][j] + a[i][k] * b[k][j];
                }
        return c;
    }
    static constexpr S e() {
        S identity = {};
        REP (i, N) identity[i][i] = 1;
        return identity;
    }
};

struct Monoid {
    // using S = ?;
    // static constexpr S op(const S &a, const S &b) {}
    // static constexpr S e() {}
};

template <int char_size>
struct TrieNode {
    int nxt[char_size];

    int exist;
    vector<int> accept;

    TrieNode() : exist(0) { memset(nxt, -1, sizeof(nxt)); }
};

template <int char_size, int margin>
struct Trie {
    using Node = TrieNode<char_size>;

    vector<Node> nodes;
    int root;

    Trie() : root(0) { nodes.push_back(Node()); }

    void update_direct(int node, int id) { nodes[node].accept.push_back(id); }

    void update_child(int node, int child, int id) { ++nodes[node].exist; }

    void add(const string &str, int str_index, int node_index, int id) {
        if (str_index == str.size()) {
            update_direct(node_index, id);
        } else {
            const int c = str[str_index] - margin;
            if (nodes[node_index].nxt[c] == -1) {
                nodes[node_index].nxt[c] = (int)nodes.size();
                nodes.push_back(Node());
            }
            add(str, str_index + 1, nodes[node_index].nxt[c], id);
            update_child(node_index, nodes[node_index].nxt[c], id);
        }
    }

    void add(const string &str, int id) { add(str, 0, 0, id); }

    void add(const string &str) { add(str, nodes[0].exist); }

    void query(const string &str, const function<void(int)> &f, int str_index,
               int node_index) {
        for (auto &idx : nodes[node_index].accept) f(idx);
        if (str_index == str.size()) {
            return;
        } else {
            const int c = str[str_index] - margin;
            if (nodes[node_index].nxt[c] == -1) return;
            query(str, f, str_index + 1, nodes[node_index].nxt[c]);
        }
    }

    void query(const string &str, const function<void(int)> &f) {
        query(str, f, 0, 0);
    }

    int count() const { return (nodes[0].exist); }

    int size() const { return ((int)nodes.size()); }
};

// ===== INSERT CODE HERE =====

constexpr bool MULTI_TESTCASE = false;

void solve() {
    int q;
    cin >> q;
    min_queue<int> mq;
    REP (i, q) {
        int t;
        cin >> t;
        if (t == 1) {
            int x;
            cin >> x;
            mq.push(x);
        } else {
            cout << mq.top() << endl;
            mq.pop();
        }
    }
}

int main() {
    FASTIO();
    PRECISION(20);
    int t = 1;

    if (MULTI_TESTCASE) cin >> t;
    while (t--) {
        solve();
    }
}

Submission Info

Submission Time
Task B - Get Min
User gazelle
Language C++ 23 (gcc 12.2)
Score 200
Code Size 28943 Byte
Status AC
Exec Time 1 ms
Memory 3636 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 200 / 200
Status
AC × 2
AC × 21
Set Name Test Cases
Sample sample00.txt, sample01.txt
All sample00.txt, sample01.txt, testcase00.txt, testcase01.txt, testcase02.txt, testcase03.txt, testcase04.txt, testcase05.txt, testcase06.txt, testcase07.txt, testcase08.txt, testcase09.txt, testcase10.txt, testcase11.txt, testcase12.txt, testcase13.txt, testcase14.txt, testcase15.txt, testcase16.txt, testcase17.txt, testcase18.txt
Case Name Status Exec Time Memory
sample00.txt AC 1 ms 3496 KiB
sample01.txt AC 1 ms 3360 KiB
testcase00.txt AC 1 ms 3492 KiB
testcase01.txt AC 1 ms 3324 KiB
testcase02.txt AC 1 ms 3572 KiB
testcase03.txt AC 1 ms 3512 KiB
testcase04.txt AC 1 ms 3420 KiB
testcase05.txt AC 1 ms 3564 KiB
testcase06.txt AC 1 ms 3504 KiB
testcase07.txt AC 1 ms 3476 KiB
testcase08.txt AC 1 ms 3552 KiB
testcase09.txt AC 1 ms 3428 KiB
testcase10.txt AC 1 ms 3476 KiB
testcase11.txt AC 1 ms 3636 KiB
testcase12.txt AC 1 ms 3508 KiB
testcase13.txt AC 1 ms 3576 KiB
testcase14.txt AC 1 ms 3476 KiB
testcase15.txt AC 1 ms 3628 KiB
testcase16.txt AC 1 ms 3556 KiB
testcase17.txt AC 1 ms 3508 KiB
testcase18.txt AC 1 ms 3444 KiB