Submission #67704863


Source Code Expand

/* Pre-Processing */

#include <bits/stdc++.h>
#define Made_By_Karimskee ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
#define cin(vec) for(auto &it : vec) cin >> it
#define PI 3.14159265359
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;

void test_cases()
{
    ll n; cin >> n;

    vector<ll> vec(n);
    cin(vec);

    ll x;
    cin >> x;

    for (auto it : vec)
    {
        if (it == x)
        {
            cout << "Yes";
            return;
        }
    }

    cout << "No";
}

int main()
{
    Made_By_Karimskee
    ll t = 1;
    // cin >> t;
    while (t--) test_cases();
}

/*



*/

/** To know
 * Method to get    x from y:
 *                  4 from [4, 5, 6, 7]
 *                  8 from [8, 9, 10, 11, 12, 13, 14, 15]
 * probably using bitmask
 */

/** Methods
 * Prefix sum -> calculate the sum for each query from l to r
 * Partial sum / Ranged sum -> add x for each query from l to r
 * 
 * lower_bound() -> binary search
 * upper_bound() -> binary search
 */

/** Functions
 * string timeStr = "start:14:30:25";
 * char start[10];
 * int h1, m1, s1;
 * sscanf(timeStr.c_str(), "%[^:]:%d:%d:%d", 
 *        start, &h1, &m1, &s1);
 * string startLabel = start;
 * 
 * freopen("input.txt", "r", stdin);
 * freopen("output.txt", "w", stdout);
 */

/** Don't forget
  * lower_bound(vec.begin(), vec.end(), x) -> binary search in a sorted sequence for a value >= x
  * upper_bound(vec.begin(), vec.end(), x) -> binary search in a sorted sequence for a value > x
  * equal_range(vec.begin(), vec.end(), x) -> returns a pair of (lower_bound, upper_bound)
  * 
  * logu(x) = logk(x) / logk(u)
  * 
  * Time complexity:
  * In codeforces, 1 second is:
  *                             10^8 of simple operations ([], +, >>, *, ^, ...)
  *                             10^6 of slower operations (I/O, hashmap lookup, ...)
  * 
  * n <= 10 O(n!) -> all permutations
  * n <= 20 O(2^n) -> all subsets
  * n <= 500 O(n^3) -> all triplets
  * n <= 5000 O(n^2) -> all pairs
  * n <= 10^6 O(nlogn) or O(n) -> can sort if O(nlogn), all elements if O(n)
  * n is larger O(1) or O(logn) -> no iterations
  * 
  * comparison operator:
  * struct P # Now you can sort two elements of P as normal variables
  * {
  *     int x, y;
  *     bool operator<(const P &p)
  *     {
  *         if (x != p.x) return x < p.x;
  *         else return y < p.y;
  *     }
  * };
  * bool comp(string a, string b) # You will need to pass comp to the sort function
  * {
  *     if (a.size() != b.size()) return a.size() < b.size();
  *     return a < b;
  * }
  */



/* Functions */

/* Arithmetic Progression: 3 5 8 11 */

/**
 * @param First_element @param Last_element @param Sequence_length
 * @return The summation of the sequence
 */
ll arithmetic_progression_sum(ll a1, ll an, ll n)
{
    return (a1 + an) * n / 2;
}
/**
 * @param First_element @param Sequence_length @param Difference
 * @return The last element of the sequence
 */
ll arithmetic_progression_last_element(ll a1, ll n, ll d)
{
    return a1 + (n - 1) * d;
}

/* /Arithmetic Progression: 3 5 8 11 */



/* Geometric Progression 1 2 4 8 16 */

/**
 * @param First_element @param Sequence_length @param Ratio
 * @return The summation of the sequence
 */
double geometric_progression_sum(ll a1, ll n, ll r)
{
    return a1 * (1 - pow(r, n)) / (1 - r);
}
/**
 * @param First_element @param Sequence_length @param Ratio
 * @return The last element of the sequence
 */
double geometric_progression_last_element(ll a1, ll n, ll r)
{
    return a1 * pow(r, n - 1);
}

/* /Geometric Progression 1 2 4 8 16 */



/* Power Sum 1^3 + 2^3 + 3^3 + 4^^4 + ... */

/**
 * @param sequence_length @param exponent
 * @return Returns: 1^k + 2^k + 3^k + ... + n^k
 */
ll power_sum(ll n, ll k)
{
    if (k == 1) return n * (n + 1) / 2;
    if (k == 2) return n * (n + 1) * (2 * n + 1) / 6;
    if (k == 3) { ll s = n * (n + 1) / 2; return s * s; }
    if (k == 4) return n * (n + 1) * (2 * n + 1) * (3 * n * n + 3 * n - 1) / 30;
    if (k == 5) return n * n * (n + 1) * (n + 1) * (2 * n * n + 2 * n - 1) / 12;
    return -1;
}

/* /Power Sum 1^3 + 2^3 + 3^3 + 4^^4 + ... */



/* Maths */

/**
 * @brief Accurate for n <= 70 due to floating point precision
 * @param nth_fibonacci_number
 * @return Returns the nth Fibonacci number
 */
ll fibonacci(ll n)
{
    double sqrt5 = sqrt(5), phi = (1 + sqrt5) / 2, psi = (1 - sqrt5) / 2;
    return llround((pow(phi, n) - pow(psi, n)) / sqrt5);
}

/**
 * @param number_in_decimal @param number_base
 * @return number of digits in (number)_base
 */
ll number_of_digits(ll number, ll base)
{
    if (number == 0) return 1;
    return floor(log(number) / log(base)) + 1;
}


/* Fast mathmatical operations */

/**
 * @param product
 * @return floor(log2(n))
 */
double fast_log2(ll product)
{
    return 63 - __builtin_clzll(product);
}

/**
 * @param exponent
 * @return pow(2, n)
 */
ll fast_pow(ll base, ll exponent)
{
    ll result = 1;

    while (exponent > 0)
    {
        if (exponent & 1)
            result = (result * base);

        base *= base;
        exponent >>= 1;
    }

    return result;
}

/* /Fast Mathmatical Operations */



/* /Maths */



/* Type Checkers */

/**
 * @param Number
 * @return True if float or double, False otherwise
 */
bool is_integral(double n)
{
    return floor(n) == n;
}

/* /Type Checkers */

/* /Functions */

Submission Info

Submission Time
Task A - Unsupported Type
User Karimskee
Language C++ 20 (gcc 12.2)
Score 100
Code Size 5669 Byte
Status AC
Exec Time 1 ms
Memory 3584 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 100 / 100
Status
AC × 3
AC × 25
Set Name Test Cases
Sample sample_01.txt, sample_02.txt, sample_03.txt
All sample_01.txt, sample_02.txt, sample_03.txt, test_01.txt, test_02.txt, test_03.txt, test_04.txt, test_05.txt, test_06.txt, test_07.txt, test_08.txt, test_09.txt, test_10.txt, test_11.txt, test_12.txt, test_13.txt, test_14.txt, test_15.txt, test_16.txt, test_17.txt, test_18.txt, test_19.txt, test_20.txt, test_21.txt, test_22.txt
Case Name Status Exec Time Memory
sample_01.txt AC 1 ms 3452 KiB
sample_02.txt AC 1 ms 3456 KiB
sample_03.txt AC 1 ms 3420 KiB
test_01.txt AC 1 ms 3388 KiB
test_02.txt AC 1 ms 3424 KiB
test_03.txt AC 1 ms 3584 KiB
test_04.txt AC 1 ms 3420 KiB
test_05.txt AC 1 ms 3500 KiB
test_06.txt AC 1 ms 3460 KiB
test_07.txt AC 1 ms 3496 KiB
test_08.txt AC 1 ms 3516 KiB
test_09.txt AC 1 ms 3524 KiB
test_10.txt AC 1 ms 3456 KiB
test_11.txt AC 1 ms 3436 KiB
test_12.txt AC 1 ms 3516 KiB
test_13.txt AC 1 ms 3456 KiB
test_14.txt AC 1 ms 3456 KiB
test_15.txt AC 1 ms 3508 KiB
test_16.txt AC 1 ms 3460 KiB
test_17.txt AC 1 ms 3584 KiB
test_18.txt AC 1 ms 3460 KiB
test_19.txt AC 1 ms 3584 KiB
test_20.txt AC 1 ms 3452 KiB
test_21.txt AC 1 ms 3488 KiB
test_22.txt AC 1 ms 3464 KiB