Submission #66750062


Source Code Expand

#include <bits/stdc++.h>

// what the fuck
template<typename T, int N>
struct NDVector { using type = std::vector<typename NDVector<T, N - 1>::type>; };
template<typename T>
struct NDVector<T, 1> { using type = std::vector<T>; };

// A tensor is essentially a vector of tensors. (or multidimensional array)
template<typename T, int N>
using Tensor = typename NDVector<T, N>::type;

/**
 * Create a multidimensional vector with the given dimension sizes.
 *
 * In particular, create_vector(N) = create_tensor(N), create_matrix(N, M) = create_tensor(N, M).
 * If you have some weird multidimensional DP, you can create the DP table by doing:
 *      dp = create_tensor(5, 5, 5, 5, 5);
 *
 * Be careful, for a large number of dimensions, this uses a lot of memory and is very cache unfriendly.
 */
template<typename T>
std::vector<T> create_tensor(int N) {
    return std::vector<T>(N);
}
template <typename T, typename... ArgTypes>
Tensor<T, sizeof...(ArgTypes) + 1> create_tensor(int N, ArgTypes... args) {
    auto under = create_tensor<T>(args...);
    return std::vector(N, under);
}

/**
 * Create a matrix of the given dimensions.
 */
template<typename T>
Tensor<T, 2> create_matrix(int N, int M) {
    return create_tensor<T>(N, M);
}

/**
 * Frequently used definitions, like Vector, Matrices, pairs of ints, pairs, triples, etc.
 */
template<typename T>
using Vector = Tensor<T, 1>; // I could use std::vector<T>, but this is just too cool.
template<typename T>
using Matrix = Tensor<T, 2>;

template<typename T1, typename T2>
using Pair = std::pair<T1, T2>;
using PairII = Pair<int, int>;
using PairLL = Pair<long long, long long>;

template<typename T1, typename T2, typename T3>
using Triple = std::tuple<T1, T2, T3>;

/**
 * Read a vector from input. Set start to 1 if you want it to be 1-indexed.
 */
template<typename T>
Vector<T> read_vector(int N, int start = 0) {
    Vector<T> v(start + N);
    for (int i = start; i < (int)v.size(); i++) {
        std::cin >> v[i];
    }
    return v;
}

/**
 * Read a matrix from input. Set start_l to make lines 1-indexed. Same thing for start_c.
 */
template<typename T>
Matrix<T> read_matrix(int N, int M, int start_l = 0, int start_c = 0) {
    Matrix<T> matr = create_matrix<T>(N + start_l, M + start_c);

    for (int l = start_l; l < N + start_l; l++)
        for (int c = start_c; c < M + start_c; c++)
            std::cin >> matr[l][c];

    return matr;
}

/**
 * Print a tensor to the output stream. Prints all indices between i and j, and the elements 
 * are separated by the given separator.
 *
 * To generalize, for each dimension, you give the bounds that you want to print and the separator
 * between each order. To print a matrix, you would do:
 *
 *      print_tensor(matr, std::cout, 0, N - 1, "\n", 0, M - 1, " ");
 */
template<typename T>
void print_tensor(Tensor<T, 1>& tens, std::ostream&fout, int i, int j, const char* sep) {
    for (int t = std::max(i, 0); t <= j && t < (int)tens.size(); t++) {
        fout << tens[t];
        if (t + 1 <= j)
            fout << sep;
    }
}

template<typename T, typename... Sizes>
void print_tensor(
        Tensor<T, sizeof...(Sizes) / 3 + 1>& tens,
        std::ostream& fout, 
        int i, int j, const char* sep, Sizes... sizes) {
    for (int t = std::max(i, 0); t <= j && t < (int)tens.size(); t++) {
        print_tensor<T>(tens[t], fout, sizes...);
        if (t + 1 <= j)
            fout << sep;
    }
}

/**
 * Print a vector to the given output stream with given bounds and separator.
 */
template<typename T>
void print_vector(std::vector<T>& v, std::ostream& fout, int i = 0, int j = (1 << 30), const char* sep = " ") {
    print_tensor<T>(v, fout, i, j, sep);
}

/**
 * Read a vector of pairs. Set start to 1 if you want this to be 1-indexed.
 */
template<typename T1, typename T2>
Vector<Pair<T1, T2>> read_pairvec(int N, int start = 0) {
    Vector<Pair<T1, T2>> input = Vector<Pair<T1, T2>>(start + N);
    for (int i = start; i < start + N; i++)
        std::cin >> input[i].first >> input[i].second;
    return input;
}

/**
 * Read a vector of triples. Set start to 1 if you want this to be 1-indexed.
 *
 * If you need higher order tuples, like quadruples, you're better off using a matrix instead.
 */
template<typename T1, typename T2, typename T3>
Vector<Triple<T1, T2, T3>> read_triplevec(int N, int start = 0) {
    Vector<Triple<T1, T2, T3>> input = Vector<Triple<T1, T2, T3>>(start + N);
    for (int i = start; i < N + start; i++) {
        T1 a;
        T2 b;
        T3 c;
        std::cin >> a >> b >> c;
        input[i] = {a, b, c};
    }
    return input;
}

/**
 * Removes duplicates from vector. Assumes it is sorted.
 */
template<typename T>
void deduplicate(Vector<T>& v) {
    v.resize(std::unique(v.begin(), v.end()) - v.begin());    
}

/**
 * Solve a testcase of the problem. You will code your solution here instead of main.
 */
void solve_test();

/**
 * Call this function if you have a problem with multiple testcases.
 */
void multitest_problem() {
    int T;
    std::cin >> T;

    while (T--) solve_test();
}

int main() {
    std::cin.tie(NULL);
    std::iostream::sync_with_stdio(false);

    // Choose one of the following functions, depending on the problem type.
    solve_test();
    //multitest_problem();

    return 0;
}

void solve_test() {
    int N, M;
    std::cin >> N >> M;

    auto edges = read_triplevec<int, int, int>(M);
    Vector<Vector<PairII>> graph(1 + N);
    for (auto [a, b, c] : edges)
        graph[a].push_back({b, c});

    auto vis = create_matrix<bool>(1 + N, 1 << 10);
    vis[1][0] = true;
    std::queue<PairII> q;
    q.push({1, 0});
    int res = 1 << 10;

    while (!q.empty()) {
        auto [n, c] = q.front();
        q.pop();

        if (n == N)
            res = std::min(res, c);

        for (auto [to, w] : graph[n]) {
            if (!vis[to][c ^ w]) {
                vis[to][c ^ w] = true;
                q.push({to, c ^ w});
            }
        }
    }

    if (res == (1 << 10))
        res = -1;
    std::cout << res;
}


Submission Info

Submission Time
Task D - XOR Shortest Walk
User Tinca_Matei
Language C++ 23 (gcc 12.2)
Score 400
Code Size 6273 Byte
Status AC
Exec Time 10 ms
Memory 3932 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 400 / 400
Status
AC × 3
AC × 33
Set Name Test Cases
Sample sample_01.txt, sample_02.txt, sample_03.txt
All hand_01.txt, hand_02.txt, hand_03.txt, hand_04.txt, hand_05.txt, hand_06.txt, hand_07.txt, hand_08.txt, random_01.txt, random_02.txt, random_03.txt, random_04.txt, random_05.txt, random_06.txt, random_07.txt, random_08.txt, random_09.txt, random_10.txt, random_11.txt, random_12.txt, random_13.txt, random_14.txt, random_15.txt, random_16.txt, random_17.txt, random_18.txt, random_19.txt, random_20.txt, random_21.txt, random_22.txt, sample_01.txt, sample_02.txt, sample_03.txt
Case Name Status Exec Time Memory
hand_01.txt AC 1 ms 3492 KiB
hand_02.txt AC 1 ms 3400 KiB
hand_03.txt AC 1 ms 3592 KiB
hand_04.txt AC 1 ms 3504 KiB
hand_05.txt AC 1 ms 3408 KiB
hand_06.txt AC 1 ms 3496 KiB
hand_07.txt AC 1 ms 3508 KiB
hand_08.txt AC 1 ms 3572 KiB
random_01.txt AC 1 ms 3428 KiB
random_02.txt AC 1 ms 3720 KiB
random_03.txt AC 1 ms 3400 KiB
random_04.txt AC 1 ms 3612 KiB
random_05.txt AC 1 ms 3520 KiB
random_06.txt AC 1 ms 3480 KiB
random_07.txt AC 1 ms 3528 KiB
random_08.txt AC 1 ms 3564 KiB
random_09.txt AC 1 ms 3600 KiB
random_10.txt AC 1 ms 3612 KiB
random_11.txt AC 1 ms 3432 KiB
random_12.txt AC 1 ms 3668 KiB
random_13.txt AC 3 ms 3736 KiB
random_14.txt AC 6 ms 3932 KiB
random_15.txt AC 2 ms 3552 KiB
random_16.txt AC 1 ms 3644 KiB
random_17.txt AC 1 ms 3752 KiB
random_18.txt AC 1 ms 3828 KiB
random_19.txt AC 10 ms 3692 KiB
random_20.txt AC 6 ms 3836 KiB
random_21.txt AC 8 ms 3876 KiB
random_22.txt AC 8 ms 3680 KiB
sample_01.txt AC 1 ms 3512 KiB
sample_02.txt AC 1 ms 3404 KiB
sample_03.txt AC 1 ms 3828 KiB