Submission #65636633


Source Code Expand

import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
write=sys.stdout.write
#import pypyjit
#pypyjit.set_param('max_unroll_recursion=-1')
#sys.set_int_max_str_digits(10**9)

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=ii
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod

    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

A,B,C,D=map(int,input().split())
mod=998244353
MD=MOD(mod)
MD.Build_Fact(A+B+C+D)
ans=0
for i in range(C+D):
    ans+=MD.Comb(C+D-i-1,D-1)*MD.Comb(A+B+i,B)%mod
    ans%=mod
print(ans)

Submission Info

Submission Time
Task E - Fruit Lineup
User vwxyz
Language Python (PyPy 3.10-v7.3.12)
Score 475
Code Size 3762 Byte
Status AC
Exec Time 507 ms
Memory 313720 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 475 / 475
Status
AC × 3
AC × 17
Set Name Test Cases
Sample 00_sample_00.txt, 00_sample_01.txt, 00_sample_02.txt
All 00_sample_00.txt, 00_sample_01.txt, 00_sample_02.txt, 01_random_00.txt, 01_random_01.txt, 01_random_02.txt, 01_random_03.txt, 01_random_04.txt, 01_random_05.txt, 01_random_06.txt, 01_random_07.txt, 01_random_08.txt, 01_random_09.txt, 02_max_00.txt, 02_max_01.txt, 02_max_02.txt, 02_max_03.txt
Case Name Status Exec Time Memory
00_sample_00.txt AC 182 ms 97368 KiB
00_sample_01.txt AC 183 ms 97484 KiB
00_sample_02.txt AC 373 ms 311092 KiB
01_random_00.txt AC 380 ms 313720 KiB
01_random_01.txt AC 363 ms 311732 KiB
01_random_02.txt AC 345 ms 291236 KiB
01_random_03.txt AC 263 ms 188332 KiB
01_random_04.txt AC 316 ms 252660 KiB
01_random_05.txt AC 459 ms 296828 KiB
01_random_06.txt AC 341 ms 290072 KiB
01_random_07.txt AC 293 ms 225484 KiB
01_random_08.txt AC 278 ms 212704 KiB
01_random_09.txt AC 320 ms 253204 KiB
02_max_00.txt AC 507 ms 296964 KiB
02_max_01.txt AC 505 ms 297032 KiB
02_max_02.txt AC 505 ms 296912 KiB
02_max_03.txt AC 505 ms 296644 KiB