C - Spiral Rotation Editorial /

Time Limit: 3 sec / Memory Limit: 1024 MB

配点 : 400

問題文

NN 列のグリッドが与えられます。ここで、N は偶数です。グリッドの上から i 行目、左から j 列目のマスをマス (i, j) と表記します。

グリッドの各マスは黒か白のいずれかで塗られており、A_{i, j} = # のときマス (i, j) は黒、A_{i, j} = . のときマス (i, j) は白で塗られています。

i = 1, 2, \ldots, \frac{N}{2} の順に以下の操作を行った後のグリッドの各マスの色を求めてください。

  • i 以上 N + 1 - i 以下の整数 x, y について、マス (y, N + 1 - x) の色をマス (x, y) の色で置き換える。この置き換えは条件を満たすすべての整数 x, y について同時に行う

制約

  • N2 以上 3000 以下の偶数
  • A_{i, j}# または .

入力

入力は以下の形式で標準入力から与えられる。

N
A_{1, 1}A_{1, 2}\ldotsA_{1, N}
A_{2, 1}A_{2, 2}\ldotsA_{2, N}
\vdots
A_{N, 1}A_{N, 2}\ldotsA_{N, N}

出力

すべての操作を終えた後、マス (i, j) の色が黒であるとき B_{i, j} = #、マス (i, j) の色が白であるとき B_{i, j} = . として以下の形式で出力せよ。

B_{1, 1}B_{1, 2}\ldotsB_{1, N}
B_{2, 1}B_{2, 2}\ldotsB_{2, N}
\vdots
B_{N, 1}B_{N, 2}\ldotsB_{N, N}

入力例 1

8
.......#
.......#
.####..#
.####..#
.##....#
.##....#
.#######
.#######

出力例 1

........
#######.
#.....#.
#.###.#.
#.#...#.
#.#####.
#.......
########

操作によってグリッドの各マスの色は以下のように変化します。

.......#   ........   ........   ........   ........
.......#   ######..   #######.   #######.   #######.
.####..#   ######..   #....##.   #.....#.   #.....#.
.####..# → ##..##.. → #....##. → #.##..#. → #.###.#.
.##....#   ##..##..   #..####.   #.##..#.   #.#...#.
.##....#   ##......   #..####.   #.#####.   #.#####.
.#######   ##......   #.......   #.......   #.......
.#######   ########   ########   ########   ########

入力例 2

6
.#.#.#
##.#..
...###
###...
..#.##
#.#.#.

出力例 2

#.#.#.
.#.#.#
#.#.#.
.#.#.#
#.#.#.
.#.#.#

入力例 3

12
.......#.###
#...#...#..#
###.#..#####
..#.#.#.#...
.#.....#.###
.......#.#..
#...#..#....
#####.......
...#...#.#.#
..###..#..##
#..#.#.#.#.#
.####.......

出力例 3

.#..##...##.
#.#.#.#.#...
###.##..#...
#.#.#.#.#...
#.#.##...##.
............
............
.###.###.###
...#...#.#..
.###...#.###
...#...#...#
.###...#.###

Score : 400 points

Problem Statement

You are given a grid with N rows and N columns, where N is an even number. Let (i, j) denote the cell at the i-th row from the top and j-th column from the left.

Each cell is painted black or white. If A_{i, j} = #, cell (i, j) is black; if A_{i, j} = ., it is white.

Find the color of each cell after performing the following operation for i = 1, 2, \ldots, \frac{N}{2} in this order.

  • For all pairs of integers x, y between i and N + 1 - i, inclusive, replace the color of cell (y, N + 1 - x) with the color of cell (x, y). Perform these replacements simultaneously for all such pairs x, y.

Constraints

  • N is an even number between 2 and 3000, inclusive.
  • Each A_{i, j} is # or ..

Input

The input is given from Standard Input in the following format:

N
A_{1,1}A_{1,2}\ldots A_{1,N}
A_{2,1}A_{2,2}\ldots A_{2,N}
\vdots
A_{N,1}A_{N,2}\ldots A_{N,N}

Output

After all operations, let B_{i, j} = # if cell (i, j) is black, and B_{i, j} = . if it is white. Print the grid in the following format:

B_{1,1}B_{1,2}\ldots B_{1,N}
B_{2,1}B_{2,2}\ldots B_{2,N}
\vdots
B_{N,1}B_{N,2}\ldots B_{N,N}

Sample Input 1

8
.......#
.......#
.####..#
.####..#
.##....#
.##....#
.#######
.#######

Sample Output 1

........
#######.
#.....#.
#.###.#.
#.#...#.
#.#####.
#.......
########

The operations change the colors of the grid cells as follows:

.......#   ........   ........   ........   ........
.......#   ######..   #######.   #######.   #######.
.####..#   ######..   #....##.   #.....#.   #.....#.
.####..# → ##..##.. → #....##. → #.##..#. → #.###.#.
.##....#   ##..##..   #..####.   #.##..#.   #.#...#.
.##....#   ##......   #..####.   #.#####.   #.#####.
.#######   ##......   #.......   #.......   #.......
.#######   ########   ########   ########   ########

Sample Input 2

6
.#.#.#
##.#..
...###
###...
..#.##
#.#.#.

Sample Output 2

#.#.#.
.#.#.#
#.#.#.
.#.#.#
#.#.#.
.#.#.#

Sample Input 3

12
.......#.###
#...#...#..#
###.#..#####
..#.#.#.#...
.#.....#.###
.......#.#..
#...#..#....
#####.......
...#...#.#.#
..###..#..##
#..#.#.#.#.#
.####.......

Sample Output 3

.#..##...##.
#.#.#.#.#...
###.##..#...
#.#.#.#.#...
#.#.##...##.
............
............
.###.###.###
...#...#.#..
.###...#.###
...#...#...#
.###...#.###