Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 250 点
問題文
長さ N の整数列 A,B が与えられます。1 以上 N 以下の整数 i,j を選んで、 A_i + B_j の値を最大化してください。
制約
- 1 \leq N \leq 5 \times 10^5
- |A_i| \leq 10^9\,(i=1,2,\dots,N)
- |B_j| \leq 10^9\,(j=1,2,\dots,N)
- 入力はすべて整数
入力
入力は以下の形式で標準入力から与えられる。
N A_1 A_2 \dots A_N B_1 B_2 \dots B_N
出力
A_i + B_j の最大値を出力せよ。
入力例 1
2 -1 5 3 -7
出力例 1
8
(i,j)=(1,1),(1,2),(2,1),(2,2) に対する A_i+B_j の値はそれぞれ 2,-8,8,-2 であり、(i,j)=(2,1) が最大値 8 を達成します。
入力例 2
6 15 12 3 -13 -1 -19 7 17 -13 -10 18 4
出力例 2
33
Score : 250 points
Problem Statement
You are given two integer sequences A and B, each of length N. Choose integers i, j (1 \leq i, j \leq N) to maximize the value of A_i + B_j.
Constraints
- 1 \leq N \leq 5 \times 10^5
- |A_i| \leq 10^9 (i=1,2,\dots,N)
- |B_j| \leq 10^9 (j=1,2,\dots,N)
- All input values are integers.
Input
The input is given from Standard Input in the following format:
N A_1 A_2 \dots A_N B_1 B_2 \dots B_N
Output
Print the maximum possible value of A_i + B_j.
Sample Input 1
2 -1 5 3 -7
Sample Output 1
8
For (i,j) = (1,1), (1,2), (2,1), (2,2), the values of A_i + B_j are 2, -8, 8, -2 respectively, and (i,j) = (2,1) achieves the maximum value 8.
Sample Input 2
6 15 12 3 -13 -1 -19 7 17 -13 -10 18 4
Sample Output 2
33