Ex - Dice Sum Infinity Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 600600

問題文

高橋くんは、偏りがない 66 面サイコロ 11 個と、10910^9 未満の正の整数 RR11 個持っています。 サイコロを 11 度振ると 1,2,3,4,5,61,2,3,4,5,6 のいずれかの整数の目が出ます。 どの整数の目が出るかは同様に確からしく、サイコロを複数回振ったとき、何回目に出た目の値も互いに独立です。

高橋くんは、次の操作を行います。 はじめ、C=0C=0 です。

  1. サイコロを振り、CC の値を 11 増やす。
  2. これまでに出た目の合計を XX とし、XRX-R10910^9 の倍数になったら、操作をやめる。
  3. 1. に戻る。

操作が終了したときの CC の期待値を mod998244353{}\bmod 998244353 で求めてください。

注意

この問題の制約のもとで、CC の期待値は既約分数 p/qp/q として表せ、かつ xqp(mod998244353)xq \equiv p\pmod{998244353} を満たす整数 x (0x<998244353)x\ (0\leq x\lt998244353) がただひとつ存在することが示せます。 このような xx を出力してください。

制約

  • 0<R<1090\lt R\lt10^9
  • RR は整数

入力

入力は以下の形式で標準入力から与えられる。

RR

出力

答えを 11 行で出力せよ。


入力例 1Copy

Copy
1

出力例 1Copy

Copy
291034221

操作が終了したときの CC の期待値はおよそ 833333333.619047619833333333.619047619 で、mod998244353{}\bmod 998244353 では 291034221291034221 です。


入力例 2Copy

Copy
720357616

出力例 2Copy

Copy
153778832

Score : 600600 points

Problem Statement

Takahashi has an unbiased six-sided die and a positive integer RR less than 10910^9. Each time the die is cast, it shows one of the numbers 1,2,3,4,5,61,2,3,4,5,6 with equal probability, independently of the outcomes of the other trials.

Takahashi will perform the following procedure. Initially, C=0C=0.

  1. Cast the die and increment CC by 11.
  2. Let XX be the sum of the numbers shown so far. If XRX-R is a multiple of 10910^9, quit the procedure.
  3. Go back to step 1.

Find the expected value of CC at the end of the procedure, modulo 998244353998244353.

Notes

Under the constraints of this problem, it can be shown that the expected value of CC is represented as an irreducible fraction p/qp/q, and there is a unique integer x (0x<998244353)x\ (0\leq x\lt998244353) such that xqp(mod998244353)xq \equiv p\pmod{998244353}. Print this xx.

Constraints

  • 0<R<1090\lt R\lt10^9
  • RR is an integer.

Input

The input is given from Standard Input in the following format:

RR

Output

Print a single line containing the answer.


Sample Input 1Copy

Copy
1

Sample Output 1Copy

Copy
291034221

The expected value of CC at the end of the procedure is approximately 833333333.619047619833333333.619047619, and 291034221291034221 when represented modulo 998244353998244353.


Sample Input 2Copy

Copy
720357616

Sample Output 2Copy

Copy
153778832


2025-04-03 (Thu)
06:36:01 +00:00