Submission #39614472


Source Code Expand

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

struct Runtime_Mod_Int {
    int x;

    Runtime_Mod_Int() : x(0) {}

    Runtime_Mod_Int(long long y) {
        x = y % get_mod();
        if (x < 0) x += get_mod();
    }

    static inline int &get_mod() {
        static int mod = 0;
        return mod;
    }

    static void set_mod(int md) { get_mod() = md; }

    Runtime_Mod_Int &operator+=(const Runtime_Mod_Int &p) {
        if ((x += p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator-=(const Runtime_Mod_Int &p) {
        if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator*=(const Runtime_Mod_Int &p) {
        x = (int)(1LL * x * p.x % get_mod());
        return *this;
    }

    Runtime_Mod_Int &operator/=(const Runtime_Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Runtime_Mod_Int &operator++() { return *this += Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator++(int) {
        Runtime_Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Runtime_Mod_Int &operator--() { return *this -= Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator--(int) {
        Runtime_Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Runtime_Mod_Int operator-() const { return Runtime_Mod_Int(-x); }

    Runtime_Mod_Int operator+(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) += p; }

    Runtime_Mod_Int operator-(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) -= p; }

    Runtime_Mod_Int operator*(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) *= p; }

    Runtime_Mod_Int operator/(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) /= p; }

    bool operator==(const Runtime_Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Runtime_Mod_Int &p) const { return x != p.x; }

    Runtime_Mod_Int inverse() const {
        assert(*this != Runtime_Mod_Int(0));
        return pow(get_mod() - 2);
    }

    Runtime_Mod_Int pow(long long k) const {
        Runtime_Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Runtime_Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Runtime_Mod_Int &p) {
        long long a;
        is >> a;
        p = Runtime_Mod_Int(a);
        return is;
    }
};

using mint = Runtime_Mod_Int;

template <typename T>
struct Matrix {
    vector<vector<T>> A;
    int n, m;

    Matrix(int n, int m) : A(n, vector<T>(m, 0)), n(n), m(m) {}

    inline const vector<T> &operator[](int k) const { return A[k]; }

    inline vector<T> &operator[](int k) { return A[k]; }

    static Matrix I(int l) {
        Matrix ret(l, l);
        for (int i = 0; i < l; i++) ret[i][i] = 1;
        return ret;
    }

    Matrix &operator*=(const Matrix &B) {
        assert(m == B.n);
        Matrix ret(n, B.m);
        for (int i = 0; i < n; i++) {
            for (int k = 0; k < m; k++) {
                for (int j = 0; j < B.m; j++) ret[i][j] += A[i][k] * B[k][j];
            }
        }
        swap(A, ret.A);
        m = B.m;
        return *this;
    }

    Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }

    Matrix pow(long long k) const {
        assert(n == m);
        Matrix now = *this, ret = I(n);
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    bool eq(const T &a, const T &b) const {
        return a == b;
        // return abs(a-b) <= EPS;
    }

    // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す
    pair<int, T> row_reduction(vector<T> &b) {
        assert((int)b.size() == n);
        if (n == 0) return make_pair(0, m > 0 ? 0 : 1);
        int check = 0, rank = 0;
        T det = (n == m ? 1 : 0);
        assert(b.size() == n);
        for (int j = 0; j < m; j++) {
            int pivot = check;
            for (int i = check; i < n; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            if (check != pivot) det *= T(-1);
            swap(A[check], A[pivot]), swap(b[check], b[pivot]);
            if (eq(A[check][j], T(0))) {
                det = T(0);
                continue;
            }
            rank++;
            det *= A[check][j];
            T r = T(1) / A[check][j];
            for (int k = j + 1; k < m; k++) A[check][k] *= r;
            b[check] *= r;
            A[check][j] = T(1);
            for (int i = 0; i < n; i++) {
                if (i == check) continue;
                if (!eq(A[i][j], 0)) {
                    for (int k = j + 1; k < m; k++) A[i][k] -= A[i][j] * A[check][k];
                    b[i] -= A[i][j] * b[check];
                }
                A[i][j] = T(0);
            }
            if (++check == n) break;
        }
        return make_pair(rank, det);
    }

    pair<int, T> row_reduction() {
        vector<T> b(n, T(0));
        return row_reduction(b);
    }

    // 行基本変形を行い、逆行列を求める
    pair<bool, Matrix> inverse() {
        if (n != m) return make_pair(false, Matrix(0, 0));
        if (n == 0) return make_pair(true, Matrix(0, 0));
        Matrix ret = I(n);
        for (int j = 0; j < n; j++) {
            int pivot = j;
            for (int i = j; i < n; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
            if (eq(A[j][j], T(0))) return make_pair(false, Matrix(0, 0));
            T r = T(1) / A[j][j];
            for (int k = j + 1; k < n; k++) A[j][k] *= r;
            for (int k = 0; k < n; k++) ret[j][k] *= r;
            A[j][j] = T(1);
            for (int i = 0; i < n; i++) {
                if (i == j) continue;
                if (!eq(A[i][j], T(0))) {
                    for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
                    for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
                }
                A[i][j] = T(0);
            }
        }
        return make_pair(true, ret);
    }

    // Ax = b の解の 1 つと解空間の基底の組を返す
    vector<vector<T>> Gaussian_elimination(vector<T> b) {
        row_reduction(b);
        vector<vector<T>> ret;
        vector<int> p(n, m);
        vector<bool> is_zero(m, true);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (!eq(A[i][j], T(0))) {
                    p[i] = j;
                    break;
                }
            }
            if (p[i] < m) {
                is_zero[p[i]] = false;
            } else if (!eq(b[i], T(0))) {
                return {};
            }
        }
        vector<T> x(m, T(0));
        for (int i = 0; i < n; i++) {
            if (p[i] < m) x[p[i]] = b[i];
        }
        ret.push_back(x);
        for (int j = 0; j < m; j++) {
            if (!is_zero[j]) continue;
            x[j] = T(1);
            for (int i = 0; i < n; i++) {
                if (p[i] < m) x[p[i]] = -A[i][j];
            }
            ret.push_back(x);
            x[j] = T(0);
        }
        return ret;
    }
};

int main() {
    ll A, X, M;
    cin >> A >> X >> M;

    mint::set_mod(M);

    using mat = Matrix<mint>;

    mat a(2, 2);
    a[0][0] = A;
    a[0][1] = 1, a[1][1] = 1;

    mat x(1, 2);
    x[0][0] = 1;

    x *= a.pow(X);

    cout << x[0][1] << '\n';
}

Submission Info

Submission Time
Task E - Geometric Progression
User tokusakurai
Language C++ (GCC 9.2.1)
Score 500
Code Size 11033 Byte
Status AC
Exec Time 8 ms
Memory 3648 KiB

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 500 / 500
Status AC
AC × 31
Set Name Test Cases
Sample
All sample00.txt, sample01.txt, sample02.txt, testcase00.txt, testcase01.txt, testcase02.txt, testcase03.txt, testcase04.txt, testcase05.txt, testcase06.txt, testcase07.txt, testcase08.txt, testcase09.txt, testcase10.txt, testcase11.txt, testcase12.txt, testcase13.txt, testcase14.txt, testcase15.txt, testcase16.txt, testcase17.txt, testcase18.txt, testcase19.txt, testcase20.txt, testcase21.txt, testcase22.txt, testcase23.txt, testcase24.txt, testcase25.txt, testcase26.txt, testcase27.txt
Case Name Status Exec Time Memory
sample00.txt AC 8 ms 3644 KiB
sample01.txt AC 3 ms 3584 KiB
sample02.txt AC 2 ms 3552 KiB
testcase00.txt AC 2 ms 3532 KiB
testcase01.txt AC 2 ms 3484 KiB
testcase02.txt AC 2 ms 3484 KiB
testcase03.txt AC 3 ms 3552 KiB
testcase04.txt AC 2 ms 3552 KiB
testcase05.txt AC 3 ms 3636 KiB
testcase06.txt AC 2 ms 3648 KiB
testcase07.txt AC 2 ms 3480 KiB
testcase08.txt AC 2 ms 3548 KiB
testcase09.txt AC 3 ms 3484 KiB
testcase10.txt AC 2 ms 3552 KiB
testcase11.txt AC 2 ms 3552 KiB
testcase12.txt AC 2 ms 3592 KiB
testcase13.txt AC 4 ms 3480 KiB
testcase14.txt AC 3 ms 3480 KiB
testcase15.txt AC 2 ms 3496 KiB
testcase16.txt AC 2 ms 3552 KiB
testcase17.txt AC 2 ms 3580 KiB
testcase18.txt AC 3 ms 3556 KiB
testcase19.txt AC 2 ms 3492 KiB
testcase20.txt AC 2 ms 3580 KiB
testcase21.txt AC 2 ms 3588 KiB
testcase22.txt AC 3 ms 3532 KiB
testcase23.txt AC 2 ms 3420 KiB
testcase24.txt AC 2 ms 3536 KiB
testcase25.txt AC 2 ms 3488 KiB
testcase26.txt AC 3 ms 3424 KiB
testcase27.txt AC 2 ms 3580 KiB