Submission #36827145


Source Code Expand

#include <bits/stdc++.h>
using namespace std;

#define all(a) begin(a), end(a)
#define rall(a) rbegin(a), rend(a)
#define uniq(a) (a).erase(unique(all(a)), (a).end())
#define t0 first
#define t1 second
using ll = long long;
using ull = unsigned long long;
using pll = pair<ll, ll>;
using vll = vector<ll>;
constexpr double pi = 3.14159265358979323846;
constexpr ll dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0};
constexpr ll dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0};
constexpr ll sign(ll a) { return (a > 0) - (a < 0); }
constexpr ll fdiv(ll a, ll b) { return a / b - ((a ^ b) < 0 && a % b); }
constexpr ll cdiv(ll a, ll b) { return -fdiv(-a, b); }
constexpr ll pw(ll n) { return 1ll << n; }
constexpr ll flg(ll n) { return 63 - __builtin_clzll(n); }
constexpr ll clg(ll n) { return flg(n - 1) + 1; }
constexpr ll safemod(ll x, ll mod) { return (x % mod + mod) % mod; }
template <typename T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
template <typename T> constexpr T sq(const T &a) { return a * a; }
template <typename T, typename U> constexpr bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <typename T, typename U> constexpr bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &a) {
    os << "(" << a.first << ", " << a.second << ")";
    return os;
}
template <typename T, typename U, typename V> ostream &operator<<(ostream &os, const tuple<T, U, V> &a) {
    os << "(" << get<0>(a) << ", " << get<1>(a) << ", " << get<2>(a) << ")";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &a) {
    os << "(";
    for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
    os << ")";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &a) {
    os << "{";
    for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &a) {
    os << "{";
    for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
    os << "}";
    return os;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &a) {
    os << "{";
    for (auto itr = a.begin(); itr != a.end(); ++itr) os << *itr << (next(itr) != a.end() ? ", " : "");
    os << "}";
    return os;
}
#ifdef ONLINE_JUDGE
#define dump(...) (void(0))
#else
void debug() { cerr << endl; }
template <typename Head, typename... Tail> void debug(Head &&head, Tail &&...tail) {
    cerr << head;
    if (sizeof...(Tail)) cerr << ", ";
    debug(tail...);
}
#define dump(...) cerr << __LINE__ << ": " << #__VA_ARGS__ << " = ", debug(__VA_ARGS__)
#endif
struct rep {
    struct itr {
        ll v;
        itr(ll v) : v(v) {}
        void operator++() { ++v; }
        ll operator*() const { return v; }
        bool operator!=(itr i) const { return v < *i; }
    };
    ll l, r;
    rep(ll l, ll r) : l(l), r(r) {}
    rep(ll r) : rep(0, r) {}
    itr begin() const { return l; };
    itr end() const { return r; };
};
struct per {
    struct itr {
        ll v;
        itr(ll v) : v(v) {}
        void operator++() { --v; }
        ll operator*() const { return v; }
        bool operator!=(itr i) const { return v > *i; }
    };
    ll l, r;
    per(ll l, ll r) : l(l), r(r) {}
    per(ll r) : per(0, r) {}
    itr begin() const { return r - 1; };
    itr end() const { return l - 1; };
};
struct io_setup {
    static constexpr int PREC = 20;
    io_setup() {
        cout << fixed << setprecision(PREC);
        cerr << fixed << setprecision(PREC);
    };
} iOS;

template <typename M> struct modint {
    ll val;
    modint(ll val = 0) : val(val >= 0 ? val % M::mod : (M::mod - (-val) % M::mod) % M::mod) {}
    static ll mod() { return M::mod; }
    modint inv() const {
        ll a = val, b = M::mod, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
        }
        return u;
    }
    modint pow(ll k) const {
        modint ret = 1, mul = val;
        while (k) {
            if (k & 1) ret *= mul;
            mul *= mul;
            k >>= 1;
        }
        return ret;
    }
    modint &operator+=(const modint &a) {
        if ((val += a.val) >= M::mod) val -= M::mod;
        return *this;
    }
    modint &operator-=(const modint &a) {
        if ((val += M::mod - a.val) >= M::mod) val -= M::mod;
        return *this;
    }
    modint &operator*=(const modint &a) {
        (val *= a.val) %= M::mod;
        return *this;
    }
    modint &operator/=(const modint &a) { return *this *= a.inv(); }
    modint operator+() const { return *this; }
    modint operator-() const { return modint(-val); }
    friend bool operator==(const modint &a, const modint &b) { return a.val == b.val; }
    friend bool operator!=(const modint &a, const modint &b) { return rel_ops::operator!=(a, b); }
    friend modint operator+(const modint &a, const modint &b) { return modint(a) += b; }
    friend modint operator-(const modint &a, const modint &b) { return modint(a) -= b; }
    friend modint operator*(const modint &a, const modint &b) { return modint(a) *= b; }
    friend modint operator/(const modint &a, const modint &b) { return modint(a) /= b; }
    friend istream &operator>>(istream &is, modint &a) {
        ll val;
        is >> val;
        a = modint(val);
        return is;
    }
    friend ostream &operator<<(ostream &os, const modint &a) { return os << a.val; }
};

struct _998244353 {
    constexpr static ll mod = 998244353;
};
struct _1000000007 {
    constexpr static ll mod = 1000000007;
};
using modint998244353 = modint<_998244353>;
using modint1000000007 = modint<_1000000007>;

struct arbitrary {
    static ll mod;
};
ll arbitrary::mod;

template <typename V> struct fenwick_tree {
    vector<V> data;
    fenwick_tree(ll n) : data(n + 1, V()) {}
    void add(ll i, const V &x) {
        for (++i; i < (ll)data.size(); i += i & -i) data[i] += x;
    }
    V sum(ll i) const {
        V ret = V();
        for (; i > 0; i -= i & -i) ret += data[i];
        return ret;
    }
    V sum(ll l, ll r) const { return sum(r) - sum(l); }
};
template <typename P> struct unionfind {
    using V = typename P::V;
    ll n;
    vector<ll> ps;
    vector<V> val;
    unionfind(const vector<V> &val) : n(val.size()), ps(n, -1), val(val) {}
    unionfind(ll n, const V &a = {}) : unionfind(vector<V>(n, a)) {}
    ll find(ll i) {
        if (ps[i] < 0) return i;
        return ps[i] = find(ps[i]);
    }
    ll size(ll i) { return -ps[find(i)]; }
    void unite(ll i, ll j) {
        if ((i = find(i)) == (j = find(j))) return;
        if (-ps[i] < -ps[j]) swap(i, j);
        ps[i] += ps[j];
        P::merge(val[i], val[j]);
        ps[j] = i;
    }
    bool same(ll i, ll j) { return find(i) == find(j); }
    V &operator[](ll i) { return val[find(i)]; }
    vector<vector<ll>> groups() {
        vector<vector<ll>> ret(n);
        for (ll i : rep(n)) ret[find(i)].push_back(i);
        ret.erase(remove_if(all(ret), [](const vector<ll> &v) { return v.empty(); }), ret.end());
        return ret;
    }
};
struct normal_uf {
    using V = struct {};
    static void merge(V &a, const V &b) {}
};
template <typename V> V xor64(V lb, V ub) {
    static ull x = 88172645463325252ull;
    x ^= x << 7;
    return lb + (x ^= x >> 9) % (ub - lb);
}
template <typename V> vector<V> prime_factorize(V n) {
    vector<V> ret;
    for (V i = 2; i * i <= n; ++i) {
        while (n % i == 0) {
            ret.push_back(i);
            n /= i;
        }
    }
    if (n != 1) ret.push_back(n);
    return ret;
}
template <typename F> ll bisect(ll ok, ll ng, F f) {
    while (abs(ok - ng) > 1) {
        ll mid = (ok + ng) / 2;
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}
vector<bool> prime_table(ll n) {
    vector<bool> ret(n + 1, true);
    if (n >= 0) ret[0] = false;
    if (n >= 1) ret[1] = false;
    for (ll i = 2; i * i <= n; ++i) {
        if (!ret[i]) continue;
        for (ll j = i << 1; j <= n; j += i) ret[j] = false;
    }
    return ret;
}

template <typename mint> void ntt(vector<mint> &a, bool inv = false) {
    ll n = a.size(), m = n >> 1;
    mint root = 2;
    while (root.pow((mint::mod() - 1) >> 1) == 1) root += 1;
    mint wn = root.pow((mint::mod() - 1) / n);
    if (inv) wn = wn.inv();
    vector<mint> b(n);
    for (ll i = 1; i < n; i <<= 1, wn *= wn, swap(a, b)) {
        mint wj = 1;
        for (ll j = 0; j < m; j += i, wj *= wn) {
            for (ll k : rep(i)) {
                b[0 + (j << 1) + k] = (a[0 + j + k] + a[m + j + k]);
                b[i + (j << 1) + k] = (a[0 + j + k] - a[m + j + k]) * wj;
            }
        }
    }
    if (inv) {
        mint ninv = mint(n).inv();
        for (mint &ai : a) ai *= ninv;
    }
}
template <typename mint> void intt(vector<mint> &a) { ntt(a, true); }

template <typename V> vector<V> convolution_naive(vector<V> a, vector<V> b) {
    ll na = a.size(), nb = b.size();
    vector<V> c(na + nb - 1);
    if (na < nb) swap(a, b), swap(na, nb);
    for (ll i : rep(na)) {
        for (ll j : rep(nb)) c[i + j] += a[i] * b[j];
    }
    return c;
}

template <typename mint> vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
    ll _n = a.size() + b.size() - 1, n;
    for (n = 1; n < _n; n <<= 1) {}
    a.resize(n), b.resize(n);
    ntt(a), ntt(b);
    for (ll i : rep(n)) a[i] *= b[i];
    intt(a);
    a.resize(_n);
    return a;
}

template <typename mint> vector<mint> convolution(const vector<mint> &a, const vector<mint> &b) {
    if (min(a.size(), b.size()) <= 60) {
        return convolution_naive(a, b);
    } else {
        return convolution_ntt(a, b);
    }
}

template <typename mint> struct fps : vector<mint> {
    using vector<mint>::vector;
    using vector<mint>::operator=;
    fps() : vector<mint>() {}
    fps(const mint &a) : vector<mint>(1, a) {}
    fps(const vector<mint> &a) : vector<mint>(a) {}
    fps(const fps &a) : vector<mint>(a) {}
    fps &operator=(const fps &a) {
        *this = (vector<mint>)a;
        return *this;
    }
    fps &operator+=(const fps &a) {
        if (a.size() > this->size()) this->resize(a.size());
        for (ll i : rep(a.size())) (*this)[i] += a[i];
        return *this;
    }
    fps &operator-=(const fps &a) {
        if (a.size() > this->size()) this->resize(a.size());
        for (ll i : rep(a.size())) (*this)[i] -= a[i];
        return *this;
    }
    fps &operator*=(const fps &a);
    fps &operator/=(const mint &a) {
        for (ll i : rep(this->size())) (*this)[i] /= a;
        return *this;
    };
    fps &operator>>=(ll d) {
        if ((ll)this->size() <= d) {
            *this = {};
        } else {
            this->erase(this->begin(), this->begin() + d);
        }
        return *this;
    }
    fps &operator<<=(ll d) {
        this->insert(this->begin(), d, 0);
        return *this;
    }
    fps &chdot(const fps &a) {
        for (ll i : rep(this->size())) {
            if (i < (ll)a.size()) {
                (*this)[i] *= a[i];
            } else {
                (*this)[i] = 0;
            }
        }
        return *this;
    }
    fps prefix(ll d) const { return fps(this->begin(), this->begin() + min((ll)this->size(), d)); }
    fps differential() const {
        ll n = this->size();
        fps ret(max(0ll, n - 1));
        for (ll i : rep(1, n)) { ret[i - 1] = i * (*this)[i]; }
        return ret;
    }
    fps integral() const {
        ll n = this->size();
        fps ret(n + 1);
        ret[0] = 0;
        if (n > 0) ret[1] = 1;
        for (ll i : rep(2, n + 1)) ret[i] = (-ret[mint::mod() % i]) * (mint::mod() / i);
        for (ll i : rep(n)) ret[i + 1] *= (*this)[i];
        return ret;
    }
    fps inv(ll d) const {
        fps ret{(*this)[0].inv()};
        for (ll m = 1; m < d; m <<= 1) ret = (ret + ret - ret * ret * this->prefix(m << 1)).prefix(m << 1);
        return ret.prefix(d);
    }
    fps log(ll d) const {
        assert((*this)[0] == 1);
        return (this->differential() * this->inv(d)).prefix(d - 1).integral();
    }
    fps exp(ll d) const {
        assert(this->size() == 0 || (*this)[0] == 0);
        fps ret{1};
        for (ll m = 1; m < d; m <<= 1) ret = (ret * (this->prefix(m << 1) + 1 - ret.log(m << 1))).prefix(m << 1);
        return ret.prefix(d);
    }
    fps pow(ll k, ll d) const {
        if (k == 0) {
            fps ret(d);
            if (d) ret[0] = 1;
            return ret;
        }
        for (ll i : rep(this->size())) {
            if ((*this)[i] != 0) {
                if (i > d / k) return fps(d);
                fps ret = (((*this * (*this)[i].inv()) >> i).log(d) * mint(k)).exp(d) * (*this)[i].pow(k);
                ret = (ret << (i * k)).prefix(d);
                ret.resize(d);
                return ret;
            }
        }
        return fps(d);
    }
    friend fps operator+(const fps &a) { return a; }
    friend fps operator-(const fps &a) { return fps() -= a; }
    friend fps operator+(const fps &a, const fps &b) { return fps(a) += b; }
    friend fps operator-(const fps &a, const fps &b) { return fps(a) -= b; }
    friend fps operator*(const fps &a, const fps &b) { return fps(a) *= b; }
    friend fps operator>>(const fps &a, ll d) { return fps(a) >>= d; }
    friend fps operator<<(const fps &a, ll d) { return fps(a) <<= d; }
};

using m9 = modint998244353;

template <> fps<m9> &fps<m9>::operator*=(const fps<m9> &a) {
    *this = convolution(*this, a);
    return *this;
}

template <> fps<m9> fps<m9>::inv(ll d) const {
    fps ret{(*this)[0].inv()};
    for (ll m = 1; m < d; m <<= 1) {
        fps f = this->prefix(m << 1);
        fps g = ret;
        f.resize(m << 1), ntt(f);
        g.resize(m << 1), ntt(g);
        f.chdot(g);
        intt(f);
        f >>= m, f.resize(m << 1), ntt(f);
        f.chdot(g);
        intt(f);
        f = -f;
        ret.insert(ret.end(), f.begin(), f.begin() + m);
    }
    return ret.prefix(d);
}

template <> fps<m9> fps<m9>::exp(ll d) const {
    assert(this->size() == 0 || (*this)[0] == 0);
    fps ret{1}, g{1}, g_freq{1};
    for (ll m = 1; m < d; m <<= 1) {
        fps ret_freq = ret.prefix(m);
        ret_freq.resize(m << 1), ntt(ret_freq);

        fps g_cont = g_freq;
        for (ll i : rep(m)) g_cont[i] *= ret_freq[i << 1];
        intt(g_cont);
        g_cont >>= m >> 1;
        g_cont.resize(m), ntt(g_cont);
        g_cont.chdot(g_freq);
        intt(g_cont);
        g_cont = -g_cont;
        g.insert(g.end(), g_cont.begin(), g_cont.begin() + (m >> 1));

        fps r = this->differential().prefix(m - 1);
        r.resize(m), ntt(r);
        for (ll i : rep(m)) r[i] *= ret_freq[i << 1];
        intt(r);

        fps t = ret.differential() - r;
        t.insert(t.begin(), t.back()), t.pop_back();
        t.resize(m << 1), ntt(t);
        g_freq = g, g_freq.resize(m << 1), ntt(g_freq);
        t.chdot(g_freq);
        intt(t), t.resize(m);

        fps u = (this->prefix(m << 1) - (t << m - 1).integral()) >> m;
        u.resize(m << 1), ntt(u);
        u.chdot(ret_freq);
        intt(u);

        ret += u.prefix(m) << m;
    }
    return ret.prefix(d);
}
template <typename mint> struct combination {
    vector<mint> fact, finv, inv;
    combination(ll n) : fact(n + 1), finv(n + 1), inv(n + 1) {
        fact[0] = fact[1] = finv[0] = finv[1] = inv[1] = 1;
        for (ll i : rep(2, n + 1)) {
            fact[i] = fact[i - 1] * i;
            inv[i] = -inv[mint::mod() % i] * (mint::mod() / i);
            finv[i] = finv[i - 1] * inv[i];
        }
    }
    mint P(ll n, ll r) { return r < 0 || n < r ? 0 : (fact[n] * finv[n - r]); }
    mint C(ll n, ll r) { return r < 0 ? 0 : P(n, r) * finv[r]; }
    mint H(ll n, ll r) { return C(n + r - 1, r); }
    mint catalan(ll n) { return C(2 * n, n) / (n + 1); }
};

template <typename F> auto fibsect(ll lb, ll ub, F f) {
    if (ub - lb == 1) return make_pair(lb, f(lb));
    --lb;
    ll a = 1, b = 2;
    while (a + b < ub - lb) b += a, a = b - a;
    ll l = lb + a, r = lb + b;
    auto fl = f(l), fr = f(r);
    while (true) {
        a = b - a, b -= a;
        if (r < ub && fl < fr) {
            if (b == 1) return make_pair(r, fr);
            l = r, fl = fr;
            if ((r += b - a) < ub) fr = f(r);
        } else {
            if (b == 1) return make_pair(l, fl);
            r = l, fr = fl;
            l -= b - a, fl = f(l);
        }
    }
}

int main() {
    ll n, k, c;
    cin >> n >> k >> c;
    if (c == 1) {
        cout << 1 << endl;
        return 0;
    }
    using mint = modint998244353;
    vector<mint> dp(n + 1);
    dp[0] = 1;
    for (ll i : rep(1, k + 1)) { dp[i] = (mint(2).pow(i) - 2) * c * (c - 1) / 2 + c; }
    dump(dp);
    for (ll i : rep(k + 1, n + 1)) { dp[i] = 2 * dp[i - 1] + (c - 2) * dp[i - k]; }
    dump(dp);
    cout << dp[n] << endl;
}

Submission Info

Submission Time
Task G - At Most 2 Colors
User packer_jp
Language C++ (GCC 9.2.1)
Score 0
Code Size 17581 Byte
Status WA
Exec Time 133 ms
Memory 11144 KiB

Compile Error

./Main.cpp: In static member function ‘static void normal_uf::merge(normal_uf::V&, const V&)’:
./Main.cpp:215:26: warning: unused parameter ‘a’ [-Wunused-parameter]
  215 |     static void merge(V &a, const V &b) {}
      |                       ~~~^
./Main.cpp:215:38: warning: unused parameter ‘b’ [-Wunused-parameter]
  215 |     static void merge(V &a, const V &b) {}
      |                             ~~~~~~~~~^

Judge Result

Set Name Sample All
Score / Max Score 0 / 0 0 / 600
Status
AC × 2
WA × 1
AC × 52
WA × 52
Set Name Test Cases
Sample sample_01.txt, sample_02.txt, sample_03.txt
All hand_01.txt, hand_02.txt, hand_03.txt, hand_04.txt, hand_05.txt, hand_06.txt, hand_07.txt, hand_08.txt, hand_09.txt, hand_10.txt, hand_11.txt, sample_01.txt, sample_02.txt, sample_03.txt, test_01.txt, test_02.txt, test_03.txt, test_04.txt, test_05.txt, test_06.txt, test_07.txt, test_08.txt, test_09.txt, test_10.txt, test_11.txt, test_12.txt, test_13.txt, test_14.txt, test_15.txt, test_16.txt, test_17.txt, test_18.txt, test_19.txt, test_20.txt, test_21.txt, test_22.txt, test_23.txt, test_24.txt, test_25.txt, test_26.txt, test_27.txt, test_28.txt, test_29.txt, test_30.txt, test_31.txt, test_32.txt, test_33.txt, test_34.txt, test_35.txt, test_36.txt, test_37.txt, test_38.txt, test_39.txt, test_40.txt, test_41.txt, test_42.txt, test_43.txt, test_44.txt, test_45.txt, test_46.txt, test_47.txt, test_48.txt, test_49.txt, test_50.txt, test_51.txt, test_52.txt, test_53.txt, test_54.txt, test_55.txt, test_56.txt, test_57.txt, test_58.txt, test_59.txt, test_60.txt, test_61.txt, test_62.txt, test_63.txt, test_64.txt, test_65.txt, test_66.txt, test_67.txt, test_68.txt, test_69.txt, test_70.txt, test_71.txt, test_72.txt, test_73.txt, test_74.txt, test_75.txt, test_76.txt, test_77.txt, test_78.txt, test_79.txt, test_80.txt, test_81.txt, test_82.txt, test_83.txt, test_84.txt, test_85.txt, test_86.txt, test_87.txt, test_88.txt, test_89.txt, test_90.txt
Case Name Status Exec Time Memory
hand_01.txt WA 7 ms 3500 KiB
hand_02.txt WA 2 ms 3460 KiB
hand_03.txt AC 2 ms 3536 KiB
hand_04.txt AC 2 ms 3536 KiB
hand_05.txt AC 2 ms 3524 KiB
hand_06.txt AC 1 ms 3496 KiB
hand_07.txt AC 2 ms 3520 KiB
hand_08.txt AC 2 ms 3552 KiB
hand_09.txt WA 72 ms 11044 KiB
hand_10.txt AC 70 ms 10992 KiB
hand_11.txt AC 71 ms 10956 KiB
sample_01.txt AC 2 ms 3428 KiB
sample_02.txt AC 2 ms 3552 KiB
sample_03.txt WA 3 ms 3552 KiB
test_01.txt AC 2 ms 3536 KiB
test_02.txt AC 2 ms 3500 KiB
test_03.txt AC 2 ms 3540 KiB
test_04.txt AC 2 ms 3548 KiB
test_05.txt AC 4 ms 3456 KiB
test_06.txt AC 2 ms 3540 KiB
test_07.txt AC 3 ms 3484 KiB
test_08.txt WA 2 ms 3600 KiB
test_09.txt WA 3 ms 3512 KiB
test_10.txt WA 2 ms 3508 KiB
test_11.txt AC 2 ms 3428 KiB
test_12.txt AC 3 ms 3488 KiB
test_13.txt AC 2 ms 3536 KiB
test_14.txt AC 2 ms 3508 KiB
test_15.txt AC 2 ms 3512 KiB
test_16.txt AC 2 ms 3456 KiB
test_17.txt AC 3 ms 3540 KiB
test_18.txt WA 3 ms 3496 KiB
test_19.txt WA 2 ms 3552 KiB
test_20.txt WA 3 ms 3460 KiB
test_21.txt AC 2 ms 3420 KiB
test_22.txt AC 2 ms 3548 KiB
test_23.txt WA 2 ms 3496 KiB
test_24.txt WA 1 ms 3540 KiB
test_25.txt WA 2 ms 3500 KiB
test_26.txt AC 2 ms 3496 KiB
test_27.txt AC 2 ms 3596 KiB
test_28.txt AC 2 ms 3504 KiB
test_29.txt AC 2 ms 3492 KiB
test_30.txt AC 2 ms 3452 KiB
test_31.txt AC 2 ms 3600 KiB
test_32.txt AC 55 ms 8084 KiB
test_33.txt WA 6 ms 3500 KiB
test_34.txt WA 52 ms 6600 KiB
test_35.txt WA 18 ms 8720 KiB
test_36.txt WA 12 ms 4216 KiB
test_37.txt WA 88 ms 10808 KiB
test_38.txt WA 7 ms 3416 KiB
test_39.txt WA 42 ms 6348 KiB
test_40.txt WA 36 ms 5560 KiB
test_41.txt AC 2 ms 3596 KiB
test_42.txt AC 18 ms 6296 KiB
test_43.txt WA 44 ms 9772 KiB
test_44.txt WA 90 ms 8976 KiB
test_45.txt WA 19 ms 5240 KiB
test_46.txt WA 44 ms 7408 KiB
test_47.txt WA 22 ms 4996 KiB
test_48.txt WA 34 ms 10616 KiB
test_49.txt WA 30 ms 7664 KiB
test_50.txt WA 51 ms 7668 KiB
test_51.txt AC 3 ms 3420 KiB
test_52.txt AC 12 ms 3904 KiB
test_53.txt WA 28 ms 5240 KiB
test_54.txt WA 23 ms 6292 KiB
test_55.txt WA 5 ms 3504 KiB
test_56.txt WA 19 ms 5232 KiB
test_57.txt WA 25 ms 7616 KiB
test_58.txt WA 19 ms 10084 KiB
test_59.txt WA 38 ms 6600 KiB
test_60.txt WA 30 ms 5276 KiB
test_61.txt AC 3 ms 3432 KiB
test_62.txt AC 19 ms 10972 KiB
test_63.txt WA 19 ms 11068 KiB
test_64.txt WA 16 ms 11008 KiB
test_65.txt WA 19 ms 11044 KiB
test_66.txt AC 2 ms 3460 KiB
test_67.txt AC 21 ms 10952 KiB
test_68.txt WA 16 ms 11008 KiB
test_69.txt WA 18 ms 11040 KiB
test_70.txt WA 16 ms 11144 KiB
test_71.txt AC 2 ms 3504 KiB
test_72.txt AC 16 ms 11084 KiB
test_73.txt WA 21 ms 11068 KiB
test_74.txt WA 16 ms 11068 KiB
test_75.txt WA 17 ms 11080 KiB
test_76.txt AC 3 ms 3536 KiB
test_77.txt AC 126 ms 10976 KiB
test_78.txt WA 126 ms 11048 KiB
test_79.txt WA 127 ms 11104 KiB
test_80.txt WA 126 ms 11092 KiB
test_81.txt AC 2 ms 3416 KiB
test_82.txt AC 127 ms 11088 KiB
test_83.txt WA 128 ms 11080 KiB
test_84.txt WA 133 ms 11036 KiB
test_85.txt WA 127 ms 11044 KiB
test_86.txt AC 3 ms 3488 KiB
test_87.txt AC 128 ms 11140 KiB
test_88.txt AC 126 ms 11100 KiB
test_89.txt AC 128 ms 11032 KiB
test_90.txt AC 127 ms 11048 KiB