

Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 200 点
問題文
-10^{18} 以上 10^{18} 以下の整数 N が与えられます。
以下の条件を満たす 0 以上 998244353 未満の整数 x を求めてください。なお、答えが一意に定まることが証明できます。
- N-x は 998244353 の倍数
制約
- N は -10^{18} 以上 10^{18} 以下の整数
入力
入力は以下の形式で標準入力から与えられる。
N
出力
答えを出力せよ。
入力例 1
998244354
出力例 1
1
998244354-1 = 998244353 は 998244353 の倍数なので条件を満たします。
入力例 2
-9982443534
出力例 2
998244349
-9982443534-998244349= -10980687883 は 998244353 の倍数なので条件を満たします。
Score : 200 points
Problem Statement
You are given an integer N between -10^{18} and 10^{18} (inclusive).
Find an integer x between 0 and 998244353 - 1 (inclusive) that satisfies the following condition. It can be proved that such an integer is unique.
- N-x is a multiple of 998244353.
Constraints
- N is an integer between -10^{18} and 10^{18} (inclusive).
Input
Input is given from Standard Input in the following format:
N
Output
Print the answer.
Sample Input 1
998244354
Sample Output 1
1
998244354-1 = 998244353 is a multiple of 998244353, so the condition is satisfied.
Sample Input 2
-9982443534
Sample Output 2
998244349
-9982443534-998244349= -10980687883 is a multiple of 998244353, so the condition is satisfied.