Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 200 点
問題文
x 軸の正の向きが右、y 軸の正の向きが上であるような xy 座標平面において、点 (a,b) を原点を中心として反時計回りに d 度回転させた点を求めてください。
制約
- -1000 \leq a,b \leq 1000
- 1 \leq d \leq 360
- 入力はすべて整数
入力
入力は以下の形式で標準入力から与えられる。
a b d
出力
求めるべき点を (a',b') とするとき、 a' と b' をこの順に空白区切りで出力せよ。
なお、各出力について、解との絶対誤差または相対誤差が 10^{−6} 以下であれば正解として扱われる。
入力例 1
2 2 180
出力例 1
-2 -2
(2,2) を原点を中心として反時計回りに 180 度回転させた点は、(2,2) を原点について対称な位置に移動させた点であり、(-2,-2) となります。
入力例 2
5 0 120
出力例 2
-2.49999999999999911182 4.33012701892219364908
(5,0) を原点を中心として反時計回りに 120 度回転させた点は (-\frac {5}{2} , \frac {5\sqrt{3}}{2}) です。
この例での出力はこれらの値と厳密には一致しませんが、誤差が十分に小さいため正解として扱われます。
入力例 3
0 0 11
出力例 3
0.00000000000000000000 0.00000000000000000000
(a,b) が原点(回転の中心)なので回転させても座標が変わりません。
入力例 4
15 5 360
出力例 4
15.00000000000000177636 4.99999999999999555911
360 度回転させたので座標が変わりません。
入力例 5
-505 191 278
出力例 5
118.85878514480690171240 526.66743699786547949770
Score : 200 points
Problem Statement
In an xy-coordinate plane whose x-axis is oriented to the right and whose y-axis is oriented upwards, rotate a point (a, b) around the origin d degrees counterclockwise and find the new coordinates of the point.
Constraints
- -1000 \leq a,b \leq 1000
- 1 \leq d \leq 360
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
a b d
Output
Let the new coordinates of the point be (a', b'). Print a' and b' in this order, with a space in between.
Your output will be considered correct when, for each value printed, the absolute or relative error from the answer is at most 10^{-6}.
Sample Input 1
2 2 180
Sample Output 1
-2 -2
When (2, 2) is rotated around the origin 180 degrees counterclockwise, it becomes the symmetric point of (2, 2) with respect to the origin, which is (-2, -2).
Sample Input 2
5 0 120
Sample Output 2
-2.49999999999999911182 4.33012701892219364908
When (5, 0) is rotated around the origin 120 degrees counterclockwise, it becomes (-\frac {5}{2} , \frac {5\sqrt{3}}{2}).
This sample output does not precisely match these values, but the errors are small enough to be considered correct.
Sample Input 3
0 0 11
Sample Output 3
0.00000000000000000000 0.00000000000000000000
Since (a, b) is the origin (the center of rotation), a rotation does not change its coordinates.
Sample Input 4
15 5 360
Sample Output 4
15.00000000000000177636 4.99999999999999555911
A 360-degree rotation does not change the coordinates of a point.
Sample Input 5
-505 191 278
Sample Output 5
118.85878514480690171240 526.66743699786547949770