Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 300 点
問題文
英小文字のみからなる N 個の文字列 S_1,S_2,\dots,S_N が与えられます。
S_1,S_2,\dots,S_N から文字列を好きな個数選ぶことを考えます。
このとき、「選んだ文字列の中でちょうど K 個の文字列に登場する英小文字」の種類数としてあり得る最大値を求めてください。
制約
- 1 \le N \le 15
- 1 \le K \le N
- N,K は整数
- S_i は英小文字からなる空でない文字列である。
- 1 \le i \le N を満たす整数 i に対し、S_i に同じ文字は 2 個以上含まれない。
- i \neq j ならば S_i \neq S_j である。
入力
入力は以下の形式で標準入力から与えられる。
N K S_1 S_2 \vdots S_N
出力
答えを出力せよ。
入力例 1
4 2 abi aef bc acg
出力例 1
3
S_1,S_3,S_4 を選んだ場合、a
,b
,c
がちょうど 2 個の文字列に含まれます。
4 個以上の文字がちょうど 2 個の文字列に含まれるような選び方は存在しないため、答えは 3 です。
入力例 2
2 2 a b
出力例 2
0
同じ文字列を複数回選ぶことはできません。
入力例 3
5 2 abpqxyz az pq bc cy
出力例 3
7
Score : 300 points
Problem Statement
You are given N strings S_1,S_2,\dots,S_N consisting of lowercase English alphabets.
Consider choosing some number of strings from S_1,S_2,\dots,S_N.
Find the maximum number of distinct alphabets that satisfy the following condition: "the alphabet is contained in exactly K of the chosen strings."
Constraints
- 1 \le N \le 15
- 1 \le K \le N
- N and K are integers.
- S_i is a non-empty string consisting of lowercase English alphabets.
- For each integer i such that 1 \le i \le N, S_i does not contain two or more same alphabets.
- If i \neq j, then S_i \neq S_j.
Input
Input is given from Standard Input in the following format:
N K S_1 S_2 \vdots S_N
Output
Print the answer.
Sample Input 1
4 2 abi aef bc acg
Sample Output 1
3
When S_1,S_3, and S_4 are chosen, a
,b
, and c
occur in exactly two of the strings.
There is no way to choose strings so that 4 or more alphabets occur in exactly 2 of the strings, so the answer is 3.
Sample Input 2
2 2 a b
Sample Output 2
0
You cannot choose the same string more than once.
Sample Input 3
5 2 abpqxyz az pq bc cy
Sample Output 3
7