Contest Duration: - (local time) (100 minutes) Back to Home
B - Climbing Takahashi /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

N 個の台が一列に並んでおり、左から i 番目の台の高さは H_i です。

• いま立っているのが右端の台ではなく、かつ、右隣にある台の高さが自分がいま立っている台より高いとき、右隣の台に移動する

### 制約

• 2 \leq N \leq 10^5
• 1 \leq H_i \leq 10^9
• 入力に含まれる値は全て整数である

### 入力

N
H_1 \ldots H_N


### 入力例 1

5
1 5 10 4 2


### 出力例 1

10


よって、最終的に高橋君が立っている台の高さは 10 です。

### 入力例 2

3
100 1000 100000


### 出力例 2

100000


### 入力例 3

4
27 1828 1828 9242


### 出力例 3

1828


Score : 200 points

### Problem Statement

There are N platforms arranged in a row. The height of the i-th platform from the left is H_i.

Takahashi is initially standing on the leftmost platform.

Since he likes heights, he will repeat the following move as long as possible.

• If the platform he is standing on is not the rightmost one, and the next platform to the right has a height greater than that of the current platform, step onto the next platform.

Find the height of the final platform he will stand on.

### Constraints

• 2 \leq N \leq 10^5
• 1 \leq H_i \leq 10^9
• All values in input are integers.

### Input

Input is given from Standard Input in the following format:

N
H_1 \ldots H_N


### Sample Input 1

5
1 5 10 4 2


### Sample Output 1

10


Takahashi is initially standing on the leftmost platform, whose height is 1. The next platform to the right has a height of 5 and is higher than the current platform, so he steps onto it.

He is now standing on the 2-nd platform from the left, whose height is 5. The next platform to the right has a height of 10 and is higher than the current platform, so he steps onto it.

He is now standing on the 3-rd platform from the left, whose height is 10. The next platform to the right has a height of 4 and is lower than the current platform, so he stops moving.

Thus, the height of the final platform Takahashi will stand on is 10.

### Sample Input 2

3
100 1000 100000


### Sample Output 2

100000


### Sample Input 3

4
27 1828 1828 9242


### Sample Output 3

1828