Time Limit: 2 sec / Memory Limit: 1024 MB
配点 : 300 点
問題文
10^{100} 行 7 列の行列 A があり、任意の整数対 (i,j)\ (1 \leq i \leq 10^{100}, 1 \leq j \leq 7) についてその (i,j) 成分は (i-1) \times 7 + j です。
N 行 M 列の行列 B が与えられるので、B が A から一部の矩形領域を(向きを変えずに)切り出したものであるかを判定してください。
制約
- 1 \leq N \leq 10^4
- 1 \leq M \leq 7
- 1 \leq B_{i,j} \leq 10^9
- 入力はすべて整数
入力
入力は以下の形式で標準入力から与えられる。
N M B_{1,1} B_{1,2} \ldots B_{1,M} B_{2,1} B_{2,2} \ldots B_{2,M} \hspace{1.6cm}\vdots B_{N,1} B_{N,2} \ldots B_{N,M}
出力
B が A から一部の矩形領域を切り出したものであれば Yes
と、そうでないなら No
と出力せよ。
入力例 1
2 3 1 2 3 8 9 10
出力例 1
Yes
与えられる B は、A の左上 2 行 3 列を切り出したものとなっています。
入力例 2
2 1 1 2
出力例 2
No
与えられる B を 90 度回転させると A の左上 1 行 2 列と一致しますが、問題文中に「向きを変えずに」とある通り回転による一致は認められていないため、答えは No
となります。
入力例 3
10 4 1346 1347 1348 1349 1353 1354 1355 1356 1360 1361 1362 1363 1367 1368 1369 1370 1374 1375 1376 1377 1381 1382 1383 1384 1388 1389 1390 1391 1395 1396 1397 1398 1402 1403 1404 1405 1409 1410 1411 1412
出力例 3
Yes
Score : 300 points
Problem Statement
There is a 10^{100} \times 7 matrix A, where the (i,j)-th entry is (i-1) \times 7 + j for every pair of integers (i,j)\ (1 \leq i \leq 10^{100}, 1 \leq j \leq 7).
Given an N \times M matrix B, determine whether B is some (unrotated) rectangular part of A.
Constraints
- 1 \leq N \leq 10^4
- 1 \leq M \leq 7
- 1 \leq B_{i,j} \leq 10^9
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N M B_{1,1} B_{1,2} \ldots B_{1,M} B_{2,1} B_{2,2} \ldots B_{2,M} \hspace{1.6cm}\vdots B_{N,1} B_{N,2} \ldots B_{N,M}
Output
If B is some rectangular part of A, print Yes
; otherwise, print No
.
Sample Input 1
2 3 1 2 3 8 9 10
Sample Output 1
Yes
The given matrix B is the top-left 2 \times 3 submatrix of A.
Sample Input 2
2 1 1 2
Sample Output 2
No
Although the given matrix B would match the top-left 1 \times 2 submatrix of A after rotating 90 degrees, the Problem Statement asks whether B is an unrotated part of A, so the answer is No
.
Sample Input 3
10 4 1346 1347 1348 1349 1353 1354 1355 1356 1360 1361 1362 1363 1367 1368 1369 1370 1374 1375 1376 1377 1381 1382 1383 1384 1388 1389 1390 1391 1395 1396 1397 1398 1402 1403 1404 1405 1409 1410 1411 1412
Sample Output 3
Yes