A - Seismic magnitude scales Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 100100

問題文

地震のマグニチュードは、その地震のエネルギーの大きさを対数で表した値です。マグニチュードが 11 増える度にエネルギーは約 3232 倍になることが知られています。
ここではマグニチュードが 11 増える度に地震のエネルギーがちょうど 3232 倍になるとします。このとき、マグニチュード AA の地震のエネルギーの大きさはマグニチュード BB の地震のエネルギーの大きさの何倍ですか?

制約

  • 3BA93\leq B\leq A\leq 9
  • AA , BB は整数

入力

入力は以下の形式で標準入力から与えられる。

AA BB

出力

答えを整数で出力せよ。


入力例 1Copy

Copy
6 4

出力例 1Copy

Copy
1024

6644 より 22 だけ大きいので、 マグニチュード 66 の地震はマグニチュード 44 の地震と比べて 32×32=102432\times 32=1024 倍のエネルギーを持っています。


入力例 2Copy

Copy
5 5

出力例 2Copy

Copy
1

マグニチュードが同じなのでエネルギーの大きさも同じです。

Score : 100100 points

Problem Statement

The magnitude of an earthquake is a logarithmic scale of the energy released by the earthquake. It is known that each time the magnitude increases by 11, the amount of energy gets multiplied by approximately 3232.
Here, we assume that the amount of energy gets multiplied by exactly 3232 each time the magnitude increases by 11. In this case, how many times is the amount of energy of a magnitude AA earthquake as much as that of a magnitude BB earthquake?

Constraints

  • 3BA93\leq B\leq A\leq 9
  • AA and BB are integers.

Input

Input is given from Standard Input in the following format:

AA BB

Output

Print the answer as an integer.


Sample Input 1Copy

Copy
6 4

Sample Output 1Copy

Copy
1024

66 is 22 greater than 44, so a magnitude 66 earthquake has 32×32=102432\times 32=1024 times as much energy as a magnitude 44 earthquake has.


Sample Input 2Copy

Copy
5 5

Sample Output 2Copy

Copy
1

Earthquakes with the same magnitude have the same amount of energy.



2025-04-03 (Thu)
08:20:44 +00:00