Contest Duration: - (local time) (100 minutes) Back to Home
A - Seismic magnitude scales /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

ここではマグニチュードが 1 増える度に地震のエネルギーがちょうど 32 倍になるとします。このとき、マグニチュード A の地震のエネルギーの大きさはマグニチュード B の地震のエネルギーの大きさの何倍ですか?

### 制約

• 3\leq B\leq A\leq 9
• A , B は整数

### 入力

A B


### 入力例 1

6 4


### 出力例 1

1024


64 より 2 だけ大きいので、 マグニチュード 6 の地震はマグニチュード 4 の地震と比べて 32\times 32=1024 倍のエネルギーを持っています。

### 入力例 2

5 5


### 出力例 2

1


マグニチュードが同じなのでエネルギーの大きさも同じです。

Score : 100 points

### Problem Statement

The magnitude of an earthquake is a logarithmic scale of the energy released by the earthquake. It is known that each time the magnitude increases by 1, the amount of energy gets multiplied by approximately 32.
Here, we assume that the amount of energy gets multiplied by exactly 32 each time the magnitude increases by 1. In this case, how many times is the amount of energy of a magnitude A earthquake as much as that of a magnitude B earthquake?

### Constraints

• 3\leq B\leq A\leq 9
• A and B are integers.

### Input

Input is given from Standard Input in the following format:

A B


### Output

Print the answer as an integer.

### Sample Input 1

6 4


### Sample Output 1

1024


6 is 2 greater than 4, so a magnitude 6 earthquake has 32\times 32=1024 times as much energy as a magnitude 4 earthquake has.

### Sample Input 2

5 5


### Sample Output 2

1


Earthquakes with the same magnitude have the same amount of energy.