Contest Duration: - (local time) (100 minutes) Back to Home
D - Coprime 2 /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

• 全ての 1 \le i \le N を満たす整数 i について、 \gcd(A_i,k)=1 である。

### 制約

• 入力は全て整数
• 1 \le N,M \le 10^5
• 1 \le A_i \le 10^5

### 入力

N M
A_1 A_2 \dots A_N


### 出力

1 行目に、出力する整数の数 x を出力せよ。

### 入力例 1

3 12
6 1 5


### 出力例 1

3
1
7
11


Score : 400 points

### Problem Statement

Given a sequence of N positive integers A=(A_1,A_2,\dots,A_N), find every integer k between 1 and M (inclusive) that satisfies the following condition:

• \gcd(A_i,k)=1 for every integer i such that 1 \le i \le N.

### Constraints

• All values in input are integers.
• 1 \le N,M \le 10^5
• 1 \le A_i \le 10^5

### Input

Input is given from Standard Input in the following format:

N M
A_1 A_2 \dots A_N


### Output

In the first line, print x: the number of integers satisfying the requirement.
In the following x lines, print the integers satisfying the requirement, in ascending order, each in its own line.

### Sample Input 1

3 12
6 1 5


### Sample Output 1

3
1
7
11


For example, 7 has the properties \gcd(6,7)=1,\gcd(1,7)=1,\gcd(5,7)=1, so it is included in the set of integers satisfying the requirement.
On the other hand, 9 has the property \gcd(6,9)=3, so it is not included in that set.
We have three integers between 1 and 12 that satisfy the condition: 1, 7, and 11. Be sure to print them in ascending order.