Contest Duration: - (local time) (100 minutes) Back to Home
C - Colorful Candies /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

N 個のキャンディが左右一列に並んでいます。
それぞれのキャンディは、色 1、色 2\ldots、色 10^9の、10^9 種類の色のうちいずれかの色をしています。
i = 1, 2, \ldots, N について、左から i 番目のキャンディの色は色 c_i です。

すなわち、1 \leq i \leq N-K+1 を満たす整数 i を選んで、 左から i 番目、i+1 番目、i+2 番目、\ldotsi+K-1 番目のキャンディをもらうことができます。

### 制約

• 1 \leq K \leq N \leq 3 \times 10^5
• 1 \leq c_i \leq 10^9
• 入力はすべて整数

### 入力

N K
c_1 c_2 \ldots c_N


### 入力例 1

7 3
1 2 1 2 3 3 1


### 出力例 1

3


### 入力例 2

5 5
4 4 4 4 4


### 出力例 2

1


### 入力例 3

10 6
304621362 506696497 304621362 506696497 834022578 304621362 414720753 304621362 304621362 414720753


### 出力例 3

4


Score : 300 points

### Problem Statement

There are N candies arranged in a row from left to right.
Each of these candies has one color that is one of the 10^9 colors called Color 1, Color 2, \ldots, and Color 10^9.
For each i = 1, 2, \ldots, N, the color of the i-th candy from the left is Color c_i.

From this row, Takahashi can choose K consecutive candies and get them.
That is, he can choose an integer i such that 1 \leq i \leq N-K+1 and get the i-th, (i+1)-th, (i+2)-th, \ldots, (i+K-1)-th candy from the left.

Takahashi likes to eat colorful candies, so the more variety of colors his candies have, the happier he will be.
Print the maximum possible number of distinct colors in candies he gets.

### Constraints

• 1 \leq K \leq N \leq 3 \times 10^5
• 1 \leq c_i \leq 10^9
• All values in input are integers.

### Input

Input is given from Standard Input in the following format:

N K
c_1 c_2 \ldots c_N


### Output

Print the maximum possible number of distinct colors in candies Takahashi gets.

### Sample Input 1

7 3
1 2 1 2 3 3 1


### Sample Output 1

3


If Takahashi gets the 3-rd through 5-th candies, they will have 3 distinct colors, which is the maximum possible number.

### Sample Input 2

5 5
4 4 4 4 4


### Sample Output 2

1


Takahashi can get all of these candies, but they are in a single color.

### Sample Input 3

10 6
304621362 506696497 304621362 506696497 834022578 304621362 414720753 304621362 304621362 414720753


### Sample Output 3

4