Contest Duration: - (local time) (100 minutes) Back to Home
C - Duodecim Ferra /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

なお、この問題の制約下で答えは 2^{63} 未満であることが証明できます。

### 制約

• 12 \le L \le 200
• L は整数

### 入力

L


### 入力例 1

12


### 出力例 1

1


### 入力例 2

13


### 出力例 2

12


ちょうど一つだけ長さ 2 の棒ができますが、切断後の 12 本のうち西から何番目の棒が長さ 2 になるように切断するかで 12 通りの切断方法があります。

### 入力例 3

17


### 出力例 3

4368


Score : 300 points

### Problem Statement

There is an iron bar of length L lying east-west. We will cut this bar at 11 positions to divide it into 12 bars. Here, each of the 12 resulting bars must have a positive integer length.
Find the number of ways to do this division. Two ways to do the division are considered different if and only if there is a position cut in only one of those ways.
Under the constraints of this problem, it can be proved that the answer is less than 2^{63}.

### Constraints

• 12 \le L \le 200
• L is an integer.

### Input

Input is given from Standard Input in the following format:

L


### Output

Print the number of ways to do the division.

### Sample Input 1

12


### Sample Output 1

1


There is only one way: to cut the bar into 12 bars of length 1 each.

### Sample Input 2

13


### Sample Output 2

12


Just one of the resulting bars will be of length 2. We have 12 options: one where the westmost bar is of length 2, one where the second bar from the west is of length 2, and so on.

### Sample Input 3

17


### Sample Output 3

4368