Contest Duration: - (local time) (100 minutes) Back to Home
F - Contrast /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 制約

• 1\leq N \leq 2 \times 10^5
• 1\leq A_i,B_i \leq N
• A,B はそれぞれ昇順にソートされている。
• 入力はすべて整数

### 入力

N
A_1 A_2 \cdots A_N
B_1 B_2 \cdots B_N

6
1 1 1 2 2 3
1 1 1 2 2 3

Yes
2 2 3 1 1 1

3
1 1 2
1 1 3

No

4
1 1 2 3
1 2 3 3

### 出力例 3

Yes
3 3 1 2

Score : 600 points

### Problem Statement

Given are two sequences A and B, both of length N. A and B are each sorted in the ascending order. Check if it is possible to reorder the terms of B so that for each i (1 \leq i \leq N) A_i \neq B_i holds, and if it is possible, output any of the reorderings that achieve it.

### Constraints

• 1\leq N \leq 2 \times 10^5
• 1\leq A_i,B_i \leq N
• A and B are each sorted in the ascending order.
• All values in input are integers.

### Input

Input is given from Standard Input in the following format:

N
A_1 A_2 \cdots A_N
B_1 B_2 \cdots B_N

### Output

If there exist no reorderings that satisfy the condition, print No.

If there exists a reordering that satisfies the condition, print Yes on the first line. After that, print a reordering of B on the second line, separating terms with a whitespace.

If there are multiple reorderings that satisfy the condition, you can print any of them.

6
1 1 1 2 2 3
1 1 1 2 2 3

Yes
2 2 3 1 1 1

3
1 1 2
1 1 3

No

4
1 1 2 3
1 2 3 3

Yes
3 3 1 2