F - LIS on Tree /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 600

問題文

N 頂点の木があり、i 番目の辺は頂点 u_i と頂点 v_i を結んでいます。 また、頂点 i には整数 a_i が書かれています。 1 以上 N 以下のすべての整数 k に対して、次の問題を解いてください。

  • 頂点 1 から頂点 k までの最短パス上の頂点に書かれている整数を頂点 1 に近い方から順に並べた数列の最長増加部分列の長さはいくつか。

なお、長さ L の数列 A の最長増加部分列とは、1 \leq i_1 < i_2 < ... < i_M \leq L かつ A_{i_1} < A_{i_2} < ... < A_{i_M} を満たす部分列 A_{i_1} , A_{i_2} , ... , A_{i_M} の中で 最も M が大きいものをいいます。

制約

  • 2 \leq N \leq 2 \times 10^5
  • 1 \leq a_i \leq 10^9
  • 1 \leq u_i , v_i \leq N
  • u_i \neq v_i
  • 与えられるグラフは木である。
  • 入力はすべて整数である。

入力

入力は以下の形式で標準入力から与えられる。

N
a_1 a_2 ... a_N
u_1 v_1
u_2 v_2
:
u_{N-1} v_{N-1}

出力

N 行出力せよ。k 行目には、頂点 1 から頂点 k までの最短パス上の頂点に書かれている整数を頂点 1 に近い方から順に並べた数列の最長増加部分列の長さを出力せよ。


入力例 1

10
1 2 5 3 4 6 7 3 2 4
1 2
2 3
3 4
4 5
3 6
6 7
1 8
8 9
9 10

出力例 1

1
2
3
3
4
4
5
2
2
3

例えば、頂点 1 から頂点 5 までの最短パス上の頂点に書かれている整数を頂点 1 に近い方から順に並べた数列 A1,2,5,3,4 です。この数列の最長増加部分列は A_1 , A_2 , A_4 , A_5 であり、この長さは 4 です。

Score : 600 points

Problem Statement

We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem:

  • We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence.

Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}.

Constraints

  • 2 \leq N \leq 2 \times 10^5
  • 1 \leq a_i \leq 10^9
  • 1 \leq u_i , v_i \leq N
  • u_i \neq v_i
  • The given graph is a tree.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N
a_1 a_2 ... a_N
u_1 v_1
u_2 v_2
:
u_{N-1} v_{N-1}

Output

Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k.


Sample Input 1

10
1 2 5 3 4 6 7 3 2 4
1 2
2 3
3 4
4 5
3 6
6 7
1 8
8 9
9 10

Sample Output 1

1
2
3
3
4
4
5
2
2
3

For example, the sequence A obtained from the shortest path from Vertex 1 to Vertex 5 is 1,2,5,3,4. Its longest increasing subsequence is A_1, A_2, A_4, A_5, with the length of 4.