D - Sum of Large Numbers /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

10^{100}, 10^{100}+1, ..., 10^{100}+NN+1 個の数があります。

この中から K 個以上の数を選ぶとき、その和としてあり得るものの個数を \bmod (10^9+7) で求めてください。

制約

  • 1 \leq N \leq 2\times 10^5
  • 1 \leq K \leq N+1
  • 入力は全て整数

入力

入力は以下の形式で標準入力から与えられる。

N K

出力

和としてあり得るものの個数を \bmod (10^9+7) で出力せよ。


入力例 1

3 2

出力例 1

10

以下の 10 通りが考えられます。

  • (10^{100})+(10^{100}+1)=2\times 10^{100}+1
  • (10^{100})+(10^{100}+2)=2\times 10^{100}+2
  • (10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3
  • (10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4
  • (10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5
  • (10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3
  • (10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4
  • (10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5
  • (10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6
  • (10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6

入力例 2

200000 200001

出力例 2

1

全てを選ぶしかないので 1 通りです。


入力例 3

141421 35623

出力例 3

220280457

Score : 400 points

Problem Statement

We have N+1 integers: 10^{100}, 10^{100}+1, ..., 10^{100}+N.

We will choose K or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo (10^9+7).

Constraints

  • 1 \leq N \leq 2\times 10^5
  • 1 \leq K \leq N+1
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N K

Output

Print the number of possible values of the sum, modulo (10^9+7).


Sample Input 1

3 2

Sample Output 1

10

The sum can take 10 values, as follows:

  • (10^{100})+(10^{100}+1)=2\times 10^{100}+1
  • (10^{100})+(10^{100}+2)=2\times 10^{100}+2
  • (10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3
  • (10^{100}+1)+(10^{100}+3)=2\times 10^{100}+4
  • (10^{100}+2)+(10^{100}+3)=2\times 10^{100}+5
  • (10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3
  • (10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4
  • (10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5
  • (10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6
  • (10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6

Sample Input 2

200000 200001

Sample Output 2

1

We must choose all of the integers, so the sum can take just 1 value.


Sample Input 3

141421 35623

Sample Output 3

220280457