D - Friend Suggestions /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

とあるSNSに、人 1 、人 2\cdots、人 N が登録しています。

この N 人の間には、 M 組の「友達関係」と、 K 組の「ブロック関係」が存在します。

i = 1, 2, \cdots, M について、人 A_i と人 B_i は友達関係にあります。この関係は双方向的です。

i = 1, 2, \cdots, K について、人 C_i と人 D_i はブロック関係にあります。この関係は双方向的です。

以下の 4 つの条件が満たされるとき、人 a は人 b の「友達候補」であると定義します。

  • a \neq b である。
  • a と人 b はブロック関係に無い。
  • a と人 b は友達関係に無い。
  • 1 以上 N 以下の整数から成るある数列 c_0, c_1, c_2, \cdots, c_L が存在し、c_0 = a であり、 c_L = b であり、 i = 0, 1, \cdots, L - 1 について、人 c_i と人 c_{i+1} は友達関係にある。

i = 1, 2, ... N について、友達候補の数を答えてください。

制約

  • 入力は全て整数
  • 2 ≤ N ≤ 10^5
  • 0 \leq M \leq 10^5
  • 0 \leq K \leq 10^5
  • 1 \leq A_i, B_i \leq N
  • A_i \neq B_i
  • 1 \leq C_i, D_i \leq N
  • C_i \neq D_i
  • (A_i, B_i) \neq (A_j, B_j) (i \neq j)
  • (A_i, B_i) \neq (B_j, A_j)
  • (C_i, D_i) \neq (C_j, D_j) (i \neq j)
  • (C_i, D_i) \neq (D_j, C_j)
  • (A_i, B_i) \neq (C_j, D_j)
  • (A_i, B_i) \neq (D_j, C_j)

入力

入力は以下の形式で標準入力から与えられる。

N M K
A_1 B_1
\vdots
A_M B_M
C_1 D_1
\vdots
C_K D_K

出力

答えを空白区切りで順に出力せよ。


入力例 1

4 4 1
2 1
1 3
3 2
3 4
4 1

出力例 1

0 1 0 1

2 と人 3 は友達関係にあり, 人 3 と人 4 は友達関係にあり, かつ人 2 と人 4 は友達関係にもブロック関係にもありませんから, 人 4 は人 2の友達候補です。

1 と人 3 は人 2 の友達候補ではありませんから, 人 2 の友達候補は 1 人です。


入力例 2

5 10 0
1 2
1 3
1 4
1 5
3 2
2 4
2 5
4 3
5 3
4 5

出力例 2

0 0 0 0 0

全ての人は他の全ての人と友達関係にありますが、友達候補は 0 人です。


入力例 3

10 9 3
10 1
6 7
8 2
2 5
8 4
7 3
10 9
6 4
5 8
2 6
7 5
3 1

出力例 3

1 3 5 4 3 3 3 3 1 0

Score : 400 points

Problem Statement

An SNS has N users - User 1, User 2, \cdots, User N.

Between these N users, there are some relationships - M friendships and K blockships.

For each i = 1, 2, \cdots, M, there is a bidirectional friendship between User A_i and User B_i.

For each i = 1, 2, \cdots, K, there is a bidirectional blockship between User C_i and User D_i.

We define User a to be a friend candidate for User b when all of the following four conditions are satisfied:

  • a \neq b.
  • There is not a friendship between User a and User b.
  • There is not a blockship between User a and User b.
  • There exists a sequence c_0, c_1, c_2, \cdots, c_L consisting of integers between 1 and N (inclusive) such that c_0 = a, c_L = b, and there is a friendship between User c_i and c_{i+1} for each i = 0, 1, \cdots, L - 1.

For each user i = 1, 2, ... N, how many friend candidates does it have?

Constraints

  • All values in input are integers.
  • 2 ≤ N ≤ 10^5
  • 0 \leq M \leq 10^5
  • 0 \leq K \leq 10^5
  • 1 \leq A_i, B_i \leq N
  • A_i \neq B_i
  • 1 \leq C_i, D_i \leq N
  • C_i \neq D_i
  • (A_i, B_i) \neq (A_j, B_j) (i \neq j)
  • (A_i, B_i) \neq (B_j, A_j)
  • (C_i, D_i) \neq (C_j, D_j) (i \neq j)
  • (C_i, D_i) \neq (D_j, C_j)
  • (A_i, B_i) \neq (C_j, D_j)
  • (A_i, B_i) \neq (D_j, C_j)

Input

Input is given from Standard Input in the following format:

N M K
A_1 B_1
\vdots
A_M B_M
C_1 D_1
\vdots
C_K D_K

Output

Print the answers in order, with space in between.


Sample Input 1

4 4 1
2 1
1 3
3 2
3 4
4 1

Sample Output 1

0 1 0 1

There is a friendship between User 2 and 3, and between 3 and 4. Also, there is no friendship or blockship between User 2 and 4. Thus, User 4 is a friend candidate for User 2.

However, neither User 1 or 3 is a friend candidate for User 2, so User 2 has one friend candidate.


Sample Input 2

5 10 0
1 2
1 3
1 4
1 5
3 2
2 4
2 5
4 3
5 3
4 5

Sample Output 2

0 0 0 0 0

Everyone is a friend of everyone else and has no friend candidate.


Sample Input 3

10 9 3
10 1
6 7
8 2
2 5
8 4
7 3
10 9
6 4
5 8
2 6
7 5
3 1

Sample Output 3

1 3 5 4 3 3 3 3 1 0