D - Handstand 2 /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

正の整数 N が与えられます。
N 以下の正の整数の組 (A,B) であって、次の条件を満たすものの個数を求めてください。

  • A,B を先頭に 0 のつかない 10 進数表記で表したときに、 A の末尾の桁が B の先頭の桁に等しく、 A の先頭の桁が B の末尾の桁に等しい

制約

  • 1 \leq N \leq 2 \times 10^5
  • 入力はすべて整数である。

入力

入力は以下の形式で標準入力から与えられる。

N

出力

答えを出力せよ。


入力例 1

25

出力例 1

17

条件を満たす正の整数の組 (A,B) は、
(1,1), (1,11), (2,2), (2,22), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (11,1), (11,11), (12,21), (21,12), (22,2), (22,22)
17 個あります。


入力例 2

1

出力例 2

1

入力例 3

100

出力例 3

108

入力例 4

2020

出力例 4

40812

入力例 5

200000

出力例 5

400000008

Score : 400 points

Problem Statement

Given is a positive integer N.
Find the number of pairs (A, B) of positive integers not greater than N that satisfy the following condition:

  • When A and B are written in base ten without leading zeros, the last digit of A is equal to the first digit of B, and the first digit of A is equal to the last digit of B.

Constraints

  • 1 \leq N \leq 2 \times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N

Output

Print the answer.


Sample Input 1

25

Sample Output 1

17

The following 17 pairs satisfy the condition: (1,1), (1,11), (2,2), (2,22), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (11,1), (11,11), (12,21), (21,12), (22,2), and (22,22).


Sample Input 2

1

Sample Output 2

1

Sample Input 3

100

Sample Output 3

108

Sample Input 4

2020

Sample Output 4

40812

Sample Input 5

200000

Sample Output 5

400000008