Submission #7221837


Source Code Expand

module mod_graph
  implicit none
  integer(8), parameter :: inf = 1000000000000000000_8

  type item
    integer :: id = 0
    integer(8) :: wt = 0_8
  end type

  type priorityqueue
    integer :: num = 0
    type(item), pointer :: heap(:) => null()
  end type

  type edge
    integer :: fm = 0, to = 0, cp = 0, rv = 0
    integer(8) :: wt = 0_8
  end type

  type arraylist
    integer :: num = 0
    type(edge), pointer :: arr(:) => null()
  contains
    procedure :: add => adde
    procedure :: bellman_ford => bellman_ford
  end type

  type graph
    type(arraylist), pointer :: egs(:) => null()
    logical, pointer :: used(:) => null()
  contains
    procedure :: add => add
    procedure :: dijkstra => dijkstra
    procedure :: ford_fulkerson => ford_fulkerson
  end type

  interface graph
    module procedure :: newg
  end interface graph

contains

  function newi(id,wt) result(ret)
    integer, intent(in) :: id
    integer(8), intent(in) :: wt
    type(item) :: ret
    ret%id = id
    ret%wt = wt
  end

  subroutine swapi(a,b)
    type(item), intent(inout) :: a, b
    type(item) :: c
    c = a
    a = b
    b = c
  end

  subroutine appendi(a)
    type(item), pointer, intent(inout) :: a(:)
    integer :: n
    type(item), allocatable :: tmp(:)
    n = size(a)
    allocate(tmp(n))
    tmp = a
    deallocate(a)
    allocate(a(2*n))
    a(1:n) = tmp
    deallocate(tmp)
  end

  function lessi(a,b) result(ret)
    type(item), intent(in) :: a, b
    logical :: ret
    ret = a%wt < b%wt
  end

  subroutine finalizei(pq)
    type(priorityqueue), intent(inout) :: pq
    if (associated(pq%heap)) deallocate(pq%heap)
    pq%num = 0
  end

  subroutine offer(pq,it)
    type(priorityqueue), intent(inout) :: pq
    type(item), intent(in) :: it
    integer :: i, j
    if (.not.associated(pq%heap)) allocate(pq%heap(1))
    if (pq%num == size(pq%heap)) call appendi(pq%heap)
    pq%num = pq%num+1
    pq%heap(pq%num) = it
    i = pq%num
    do while (i > 1)
      j = i/2
      if (lessi(pq%heap(i),pq%heap(j))) call swapi(pq%heap(i),pq%heap(j))
      i = j
    end do
  end

  function poll(pq) result(ret)
    type(priorityqueue), intent(inout) :: pq
    type(item) :: ret
    integer :: n, i, j
    n = pq%num
    ret = pq%heap(1)
    pq%heap(1) = pq%heap(n)
    pq%num = pq%num-1
    i = 1
    do while (2*i < n)
      j = 2*i
      if (j+1 < n .and. lessi(pq%heap(j+1),pq%heap(j))) j = j+1
      if (lessi(pq%heap(j),pq%heap(i))) call swapi(pq%heap(j),pq%heap(i))
      i = j
    end do
  end

  function newe(to,wt,fm,cp,rv) result(ret)
    integer, intent(in) :: to
    integer(8), intent(in) :: wt
    integer, intent(in), optional :: fm, cp, rv
    type(edge) :: ret
    if (present(fm)) ret%fm = fm
    ret%to = to
    ret%wt = wt
    if (present(cp) .and. present(rv)) then
      ret%cp = cp
      ret%rv = rv
    end if
  end

  subroutine appende(a)
    type(edge), pointer, intent(inout) :: a(:)
    integer :: n
    type(edge), allocatable :: tmp(:)
    n = size(a)
    allocate(tmp(n))
    tmp = a
    deallocate(a)
    allocate(a(2*n))
    a(1:n) = tmp
    deallocate(tmp)
  end

  function lesse(a,b) result(ret)
    type(edge), intent(in) :: a, b
    logical :: ret
    ret = a%wt < b%wt
  end

  subroutine finalizee(list)
    type(arraylist), intent(inout) :: list
    if (associated(list%arr)) deallocate(list%arr)
    list%num = 0
  end

  subroutine adde(list,e)
    class(arraylist), intent(inout) :: list
    type(edge), intent(in) :: e
    if (.not.associated(list%arr)) allocate(list%arr(1))
    if (list%num == size(list%arr)) call appende(list%arr)
    list%num = list%num+1
    list%arr(list%num) = e
  end

  function newg(n) result(ret)
    integer, intent(in) :: n
    type(graph) :: ret
    allocate(ret%egs(n))
  end

  subroutine add(g,fm,to,wt,cp)
    class(graph), intent(inout) :: g
    integer, intent(in) :: fm, to
    integer, intent(in), optional :: cp
    integer(8) :: wt
    if (present(cp)) then
      call adde(g%egs(fm),newe(to,wt,cp=cp,rv=g%egs(to)%num))
      call adde(g%egs(to),newe(fm,wt,cp=0,rv=g%egs(fm)%num-1))
    else
      call adde(g%egs(fm),newe(to,wt))
    end if
  end

  function dijkstra(g,s) result(ret)
    class(graph), intent(in) :: g
    integer, intent(in) :: s
    integer(8) :: ret(size(g%egs))
    type(priorityqueue) :: pq
    type(item) :: it
    type(edge) :: e
    integer :: i
    ret = inf
    ret(s) = 0_8
    call offer(pq,newi(s,ret(s)))
    do while (pq%num > 0)
      it = poll(pq)
      if (it%wt > ret(it%id)) cycle
      do i = 1, g%egs(it%id)%num
        e = g%egs(it%id)%arr(i)
        if (ret(e%to) > ret(it%id)+e%wt) then
          ret(e%to) = ret(it%id)+e%wt
          call offer(pq,newi(e%to,ret(e%to)))
        end if
      end do
    end do
  end

  recursive subroutine dfs_bf(g,u)
    type(graph), intent(inout) :: g
    integer, intent(in) :: u
    integer :: i, v
    g%used(u) = .true.
    do i = 1, g%egs(u)%num
      v = g%egs(u)%arr(i)%to
      if (g%used(v)) cycle
      call dfs_bf(g,v)
    end do
  end

  function bellman_ford(es,s,t) result(ret)
    class(arraylist), intent(in) :: es
    integer, intent(in) :: s, t
    integer(8) :: ret
    integer :: n, i, fm, to, step
    integer(8) :: wt
    logical :: updated
    integer(8), allocatable :: tmp(:)
    type(graph) :: gs, gt
    type(arraylist) :: reach
    n = 0
    do i = 1, es%num
      n = max(n,es%arr(i)%fm,es%arr(i)%to)
    end do
    gs = newg(n)
    gt = newg(n)
    allocate(gs%used(n),gt%used(n))
    gs%used = .false.
    gt%used = .false.
    do i = 1, es%num
      fm = es%arr(i)%fm
      to = es%arr(i)%to
      wt = es%arr(i)%wt
      call add(gs,fm,to,wt)
      call add(gt,to,fm,wt)
    end do
    call dfs_bf(gs,s)
    call dfs_bf(gt,t)
    n = 0
    do i = 1, es%num
      fm = es%arr(i)%fm
      to = es%arr(i)%to
      if (gs%used(fm) .and. gt%used(fm) .and. gs%used(to) .and. gt%used(to)) then
        call adde(reach,es%arr(i))
        n = max(n,fm,to)
      end if
    end do
    deallocate(gs%used,gt%used)
    allocate(tmp(n))
    tmp = inf
    tmp(s) = 0_8
    step = 0
    updated = .true.
    do while (updated)
      updated = .false.
      do i = 1, reach%num
        fm = reach%arr(i)%fm
        to = reach%arr(i)%to
        wt = reach%arr(i)%wt
        if (tmp(to) > tmp(fm)+wt) then
          tmp(to) = tmp(fm)+wt
          updated = .true.
        end if
      end do
      step = step+1
      if (step > n) then
        ret = -inf
        return
      end if
    end do
    ret = tmp(t)
    deallocate(tmp)
  end

  recursive function dfs_ff(g,u,t,f) result(ret)
    class(graph), intent(inout) :: g
    integer, intent(in) :: u, t, f
    integer :: ret
    integer :: i, v, cp, rv
    ret = f
    if (u == t) return
    g%used(u) = .true.
    do i = 1, g%egs(u)%num
      v = g%egs(u)%arr(i)%to
      cp = g%egs(u)%arr(i)%cp
      if (g%used(v) .or. cp <= 0) cycle
      ret = dfs_ff(g,v,t,min(f,cp))
      rv = g%egs(u)%arr(i)%rv
      if (ret > 0) then
        g%egs(u)%arr(i)%cp = g%egs(u)%arr(i)%cp-ret
        g%egs(v)%arr(rv)%cp = g%egs(v)%arr(rv)%cp+ret
        return
      end if
    end do
    ret = 0
  end

  function ford_fulkerson(g,s,t) result(ret)
    class(graph), intent(inout) :: g
    integer, intent(in) :: s, t
    integer :: ret
    integer :: f
    ret = 0
    if (.not.associated(g%used)) allocate(g%used(size(g%egs)))
    do
      g%used = .false.
      f = dfs_ff(g,s,t,1000000000)
      if (f == 0) then
        deallocate(g%used)
        return
      end if
      ret = ret+f
    end do
  end

end module mod_graph

program coins_respawn
  use mod_graph
  implicit none
  integer :: n, m, p, a, b, c, i
  type(arraylist) :: es
  integer(8) :: ans = 0_8
  read(*,*) n, m, p
  do i = 1, m
    read(*,*) a, b, c
    call es%add(newe(b,int(p-c,8),a))
  end do
  ans = es%bellman_ford(1,n)
  if (ans == -inf) then
    ans = -1_8
  else if (ans > 0_8) then
    ans = 0_8
  else
    ans = -ans
  end if
  write(*,'(i0)') ans
end program coins_respawn

Submission Info

Submission Time
Task E - Coins Respawn
User ue1221
Language Fortran (gfortran v4.8.4)
Score 500
Code Size 8344 Byte
Status AC
Exec Time 42 ms
Memory 1576 KiB

Judge Result

Set Name Sample All after_contest
Score / Max Score 0 / 0 500 / 500 0 / 0
Status
AC × 3
AC × 56
AC × 3
Set Name Test Cases
Sample a01, a02, a03
All a01, a02, a03, b04, b05, b06, b07, b08, b09, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38, b39, b40, b41, b42, b43, b44, b45, b46, b47, b48, b49, b50, b51, b52, b53, b54, b55, b56
after_contest after_contest_57, after_contest_58, after_contest_59
Case Name Status Exec Time Memory
a01 AC 1 ms 256 KiB
a02 AC 1 ms 256 KiB
a03 AC 1 ms 256 KiB
after_contest_57 AC 15 ms 1024 KiB
after_contest_58 AC 15 ms 1024 KiB
after_contest_59 AC 15 ms 1024 KiB
b04 AC 1 ms 256 KiB
b05 AC 1 ms 256 KiB
b06 AC 1 ms 256 KiB
b07 AC 1 ms 256 KiB
b08 AC 1 ms 256 KiB
b09 AC 11 ms 1024 KiB
b10 AC 11 ms 1024 KiB
b11 AC 12 ms 1024 KiB
b12 AC 11 ms 1024 KiB
b13 AC 11 ms 1024 KiB
b14 AC 7 ms 1024 KiB
b15 AC 5 ms 1196 KiB
b16 AC 5 ms 1320 KiB
b17 AC 5 ms 1320 KiB
b18 AC 11 ms 1024 KiB
b19 AC 11 ms 1024 KiB
b20 AC 12 ms 1024 KiB
b21 AC 12 ms 1024 KiB
b22 AC 3 ms 768 KiB
b23 AC 4 ms 896 KiB
b24 AC 4 ms 896 KiB
b25 AC 1 ms 512 KiB
b26 AC 15 ms 1576 KiB
b27 AC 15 ms 1576 KiB
b28 AC 15 ms 1576 KiB
b29 AC 23 ms 1576 KiB
b30 AC 23 ms 1576 KiB
b31 AC 23 ms 1576 KiB
b32 AC 12 ms 1448 KiB
b33 AC 11 ms 1320 KiB
b34 AC 10 ms 1320 KiB
b35 AC 10 ms 1320 KiB
b36 AC 10 ms 1320 KiB
b37 AC 10 ms 1320 KiB
b38 AC 7 ms 1320 KiB
b39 AC 6 ms 1192 KiB
b40 AC 7 ms 1320 KiB
b41 AC 6 ms 1064 KiB
b42 AC 6 ms 1064 KiB
b43 AC 34 ms 1320 KiB
b44 AC 37 ms 1320 KiB
b45 AC 42 ms 1320 KiB
b46 AC 33 ms 1320 KiB
b47 AC 6 ms 1064 KiB
b48 AC 3 ms 896 KiB
b49 AC 11 ms 1024 KiB
b50 AC 15 ms 1024 KiB
b51 AC 11 ms 1024 KiB
b52 AC 15 ms 1024 KiB
b53 AC 12 ms 1024 KiB
b54 AC 6 ms 1448 KiB
b55 AC 17 ms 1576 KiB
b56 AC 26 ms 1576 KiB