B - Good Distance Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 200

問題文

D 次元空間上に N 個の点があります。

i 番目の点の座標は (X_{i1}, X_{i2}, ..., X_{iD}) です。

座標 (y_1, y_2, ..., y_D) の点と座標 (z_1, z_2, ..., z_D) の点の距離は \sqrt{(y_1 - z_1)^2 + (y_2 - z_2)^2 + ... + (y_D - z_D)^2} です。

i 番目の点と j 番目の点の距離が整数となるような組 (i, j) (i < j) はいくつあるでしょうか。

制約

  • 入力は全て整数である。
  • 2 \leq N \leq 10
  • 1 \leq D \leq 10
  • -20 \leq X_{ij} \leq 20
  • 同じ座標の点は与えられない。すなわち、i \neq j ならば X_{ik} \neq X_{jk} なる k が存在する。

入力

入力は以下の形式で標準入力から与えられる。

N D
X_{11} X_{12} ... X_{1D}
X_{21} X_{22} ... X_{2D}
\vdots
X_{N1} X_{N2} ... X_{ND}

出力

i 番目の点と j 番目の点の距離が整数となるような組 (i, j) (i < j) の数を出力せよ。


入力例 1

3 2
1 2
5 5
-2 8

出力例 1

1

以下のように距離が整数となる点の組は 1 組です。

  • 1 番目の点と 2 番目の点の距離は \sqrt{|1-5|^2 + |2-5|^2} = 5 で、これは整数です。
  • 2 番目の点と 3 番目の点の距離は \sqrt{|5-(-2)|^2 + |5-8|^2} = \sqrt{58} で、これは整数ではありません。
  • 3 番目の点と 1 番目の点の距離は \sqrt{|-2-1|^2+|8-2|^2} = 3\sqrt{5} で、これは整数ではありません。

入力例 2

3 4
-3 7 8 2
-12 1 10 2
-2 8 9 3

出力例 2

2

入力例 3

5 1
1
2
3
4
5

出力例 3

10

Score : 200 points

Problem Statement

There are N points in a D-dimensional space.

The coordinates of the i-th point are (X_{i1}, X_{i2}, ..., X_{iD}).

The distance between two points with coordinates (y_1, y_2, ..., y_D) and (z_1, z_2, ..., z_D) is \sqrt{(y_1 - z_1)^2 + (y_2 - z_2)^2 + ... + (y_D - z_D)^2}.

How many pairs (i, j) (i < j) are there such that the distance between the i-th point and the j-th point is an integer?

Constraints

  • All values in input are integers.
  • 2 \leq N \leq 10
  • 1 \leq D \leq 10
  • -20 \leq X_{ij} \leq 20
  • No two given points have the same coordinates. That is, if i \neq j, there exists k such that X_{ik} \neq X_{jk}.

Input

Input is given from Standard Input in the following format:

N D
X_{11} X_{12} ... X_{1D}
X_{21} X_{22} ... X_{2D}
\vdots
X_{N1} X_{N2} ... X_{ND}

Output

Print the number of pairs (i, j) (i < j) such that the distance between the i-th point and the j-th point is an integer.


Sample Input 1

3 2
1 2
5 5
-2 8

Sample Output 1

1

The number of pairs with an integer distance is one, as follows:

  • The distance between the first point and the second point is \sqrt{|1-5|^2 + |2-5|^2} = 5, which is an integer.
  • The distance between the second point and the third point is \sqrt{|5-(-2)|^2 + |5-8|^2} = \sqrt{58}, which is not an integer.
  • The distance between the third point and the first point is \sqrt{|-2-1|^2+|8-2|^2} = 3\sqrt{5}, which is not an integer.

Sample Input 2

3 4
-3 7 8 2
-12 1 10 2
-2 8 9 3

Sample Output 2

2

Sample Input 3

5 1
1
2
3
4
5

Sample Output 3

10