B - Bounding

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 200

問題文

数直線上を N + 1 回跳ねるボールがあり、1 回目は 座標 D_1 = 0, i 回目は 座標 D_i = D_{i-1} + L_{i-1} (2 \leq i \leq N+1) で跳ねます。

数直線の座標が X 以下の領域でボールが跳ねる回数は何回でしょうか。

制約

  • 1 \leq N \leq 100
  • 1 \leq L_i \leq 100
  • 1 \leq X \leq 10000
  • 入力は全て整数である

入力

入力は以下の形式で標準入力から与えられる。

N X
L_1 L_2 ... L_{N-1} L_N

出力

数直線の座標が X 以下の領域でボールが跳ねる回数を出力せよ。


入力例 1

3 6
3 4 5

出力例 1

2

ボールは順に座標 0, 3, 7, 12 で跳ねるので、座標 6 以下の領域で跳ねる回数は 2 回です。


入力例 2

4 9
3 3 3 3

出力例 2

4

ボールは順に座標 0, 3, 6, 9, 12 で跳ねるので、座標 9 以下の領域で跳ねる回数は 4 回です。

Score : 200 points

Problem Statement

A ball will bounce along a number line, making N + 1 bounces. It will make the first bounce at coordinate D_1 = 0, and the i-th bounce (2 \leq i \leq N+1) at coordinate D_i = D_{i-1} + L_{i-1}.

How many times will the ball make a bounce where the coordinate is at most X?

Constraints

  • 1 \leq N \leq 100
  • 1 \leq L_i \leq 100
  • 1 \leq X \leq 10000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

N X
L_1 L_2 ... L_{N-1} L_N

Output

Print the number of times the ball will make a bounce where the coordinate is at most X.


Sample Input 1

3 6
3 4 5

Sample Output 1

2

The ball will make a bounce at the coordinates 0, 3, 7 and 12, among which two are less than or equal to 6.


Sample Input 2

4 9
3 3 3 3

Sample Output 2

4

The ball will make a bounce at the coordinates 0, 3, 6, 9 and 12, among which four are less than or equal to 9.