D - Integer Cards

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

N 枚のカードがあり、i 番目のカードには整数 A_i が書かれています。

あなたは、j = 1, 2, ..., M について順に以下の操作を 1 回ずつ行います。

操作: カードを B_j 枚まで選ぶ(0 枚でもよい)。選んだカードに書かれている整数をそれぞれ C_j に書き換える。

M 回の操作終了後に N 枚のカードに書かれた整数の合計の最大値を求めてください。

制約

  • 入力は全て整数である。
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^5
  • 1 \leq A_i, C_i \leq 10^9
  • 1 \leq B_i \leq N

入力

入力は以下の形式で標準入力から与えられる。

N M
A_1 A_2 ... A_N
B_1 C_1
B_2 C_2
\vdots
B_M C_M

出力

M 回の操作終了後に N 枚のカードに書かれた整数の合計の最大値を出力せよ。


入力例 1

3 2
5 1 4
2 3
1 5

出力例 1

14

2 番目のカードに書かれた整数を 5 に書き換えることで、3 枚のカードに書かれた整数の合計が 5 + 5 + 4 = 14 となり、このときが最大です。


入力例 2

10 3
1 8 5 7 100 4 52 33 13 5
3 10
4 30
1 4

出力例 2

338

入力例 3

3 2
100 100 100
3 99
3 99

出力例 3

300

入力例 4

11 3
1 1 1 1 1 1 1 1 1 1 1
3 1000000000
4 1000000000
3 1000000000

出力例 4

10000000001

出力が 32 bit 整数型に収まらない場合があります。

Score : 400 points

Problem Statement

You have N cards. On the i-th card, an integer A_i is written.

For each j = 1, 2, ..., M in this order, you will perform the following operation once:

Operation: Choose at most B_j cards (possibly zero). Replace the integer written on each chosen card with C_j.

Find the maximum possible sum of the integers written on the N cards after the M operations.

Constraints

  • All values in input are integers.
  • 1 \leq N \leq 10^5
  • 1 \leq M \leq 10^5
  • 1 \leq A_i, C_i \leq 10^9
  • 1 \leq B_i \leq N

Input

Input is given from Standard Input in the following format:

N M
A_1 A_2 ... A_N
B_1 C_1
B_2 C_2
\vdots
B_M C_M

Output

Print the maximum possible sum of the integers written on the N cards after the M operations.


Sample Input 1

3 2
5 1 4
2 3
1 5

Sample Output 1

14

By replacing the integer on the second card with 5, the sum of the integers written on the three cards becomes 5 + 5 + 4 = 14, which is the maximum result.


Sample Input 2

10 3
1 8 5 7 100 4 52 33 13 5
3 10
4 30
1 4

Sample Output 2

338

Sample Input 3

3 2
100 100 100
3 99
3 99

Sample Output 3

300

Sample Input 4

11 3
1 1 1 1 1 1 1 1 1 1 1
3 1000000000
4 1000000000
3 1000000000

Sample Output 4

10000000001

The output may not fit into a 32-bit integer type.