Contest Duration: - (local time) (100 minutes) Back to Home
D - Even Relation /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

N 頂点の木があります。 この木の i 番目の辺は頂点 u_i と頂点 v_i を結んでおり、その長さは w_i です。 あなたは以下の条件を満たすように、この木の頂点を白と黒の 2 色で塗り分けたいです (すべての頂点を同じ色で塗っても構いません)。

• 同じ色に塗られた任意の 2 頂点について、その距離が偶数である。

### 制約

• 入力は全て整数である。
• 1 \leq N \leq 10^5
• 1 \leq u_i < v_i \leq N
• 1 \leq w_i \leq 10^9

### 入力

N
u_1 v_1 w_1
u_2 v_2 w_2
.
.
.
u_{N - 1} v_{N - 1} w_{N - 1}


### 入力例 1

3
1 2 2
2 3 1


### 出力例 1

0
0
1


### 入力例 2

5
2 5 2
2 3 10
1 3 8
3 4 2


### 出力例 2

1
0
1
0
1


Score : 400 points

### Problem Statement

We have a tree with N vertices numbered 1 to N. The i-th edge in the tree connects Vertex u_i and Vertex v_i, and its length is w_i. Your objective is to paint each vertex in the tree white or black (it is fine to paint all vertices the same color) so that the following condition is satisfied:

• For any two vertices painted in the same color, the distance between them is an even number.

Find a coloring of the vertices that satisfies the condition and print it. It can be proved that at least one such coloring exists under the constraints of this problem.

### Constraints

• All values in input are integers.
• 1 \leq N \leq 10^5
• 1 \leq u_i < v_i \leq N
• 1 \leq w_i \leq 10^9

### Input

Input is given from Standard Input in the following format:

N
u_1 v_1 w_1
u_2 v_2 w_2
.
.
.
u_{N - 1} v_{N - 1} w_{N - 1}


### Output

Print a coloring of the vertices that satisfies the condition, in N lines. The i-th line should contain 0 if Vertex i is painted white and 1 if it is painted black.

If there are multiple colorings that satisfy the condition, any of them will be accepted.

### Sample Input 1

3
1 2 2
2 3 1


### Sample Output 1

0
0
1


### Sample Input 2

5
2 5 2
2 3 10
1 3 8
3 4 2


### Sample Output 2

1
0
1
0
1