B - Can you solve this?

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 200

問題文

N 個のソースコードがあり、i 個目のソースコードの特徴は A_{i1}, A_{i2}, ..., A_{iM}M 個の整数で表されます。

また、整数 B_1, B_2, ..., B_M と 整数 C が与えられます。

A_{i1} B_1 + A_{i2} B_2 + ... + A_{iM} B_M + C > 0 のときに限り、i 個目のソースコードはこの問題に正答するソースコードです。

N 個のソースコードのうち、この問題に正答するソースコードの個数を求めてください。

制約

  • 入力は全て整数である。
  • 1 \leq N, M \leq 20
  • -100 \leq A_{ij} \leq 100
  • -100 \leq B_i \leq 100
  • -100 \leq C \leq 100

入力

入力は以下の形式で標準入力から与えられる。

N M C
B_1 B_2 ... B_M
A_{11} A_{12} ... A_{1M}
A_{21} A_{22} ... A_{2M}
\vdots
A_{N1} A_{N2} ... A_{NM}

出力

N 個のソースコードのうち、この問題に正答するソースコードの個数を出力せよ。


入力例 1

2 3 -10
1 2 3
3 2 1
1 2 2

出力例 1

1

以下のように 2 個目のソースコードのみがこの問題に正答します。

  • 3 \times 1 + 2 \times 2 + 1 \times 3 + (-10) = 0 \leq 0 なので 1 個目のソースコードはこの問題に正答しません。
  • 1 \times 1 + 2 \times 2 + 2 \times 3 + (-10) = 1 > 0 なので 2 個目のソースコードはこの問題に正答します。

入力例 2

5 2 -4
-2 5
100 41
100 40
-3 0
-6 -2
18 -13

出力例 2

2

入力例 3

3 3 0
100 -100 0
0 100 100
100 100 100
-100 100 100

出力例 3

0

全て Wrong Answer です。あなたのソースコードは含めません。

Score : 200 points

Problem Statement

There are N pieces of source code. The characteristics of the i-th code is represented by M integers A_{i1}, A_{i2}, ..., A_{iM}.

Additionally, you are given integers B_1, B_2, ..., B_M and C.

The i-th code correctly solves this problem if and only if A_{i1} B_1 + A_{i2} B_2 + ... + A_{iM} B_M + C > 0.

Among the N codes, find the number of codes that correctly solve this problem.

Constraints

  • All values in input are integers.
  • 1 \leq N, M \leq 20
  • -100 \leq A_{ij} \leq 100
  • -100 \leq B_i \leq 100
  • -100 \leq C \leq 100

Input

Input is given from Standard Input in the following format:

N M C
B_1 B_2 ... B_M
A_{11} A_{12} ... A_{1M}
A_{21} A_{22} ... A_{2M}
\vdots
A_{N1} A_{N2} ... A_{NM}

Output

Print the number of codes among the given N codes that correctly solve this problem.


Sample Input 1

2 3 -10
1 2 3
3 2 1
1 2 2

Sample Output 1

1

Only the second code correctly solves this problem, as follows:

  • Since 3 \times 1 + 2 \times 2 + 1 \times 3 + (-10) = 0 \leq 0, the first code does not solve this problem.
  • 1 \times 1 + 2 \times 2 + 2 \times 3 + (-10) = 1 > 0, the second code solves this problem.

Sample Input 2

5 2 -4
-2 5
100 41
100 40
-3 0
-6 -2
18 -13

Sample Output 2

2

Sample Input 3

3 3 0
100 -100 0
0 100 100
100 100 100
-100 100 100

Sample Output 3

0

All of them are Wrong Answer. Except yours.