D - Decayed Bridges

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 400

問題文

N 個の島と M 本の橋があります。

i 番目の橋は A_i 番目の島と B_i 番目の島を繋いでおり、双方向に行き来可能です。

はじめ、どの 2 つの島についてもいくつかの橋を渡って互いに行き来できます。

調査の結果、老朽化のためこれら M 本の橋は 1 番目の橋から順に全て崩落することがわかりました。

「いくつかの橋を渡って互いに行き来できなくなった 2 つの島の組 (a, b) (a < b) の数」を不便さと呼ぶことにします。

i (1 \leq i \leq M) について、i 番目の橋が崩落した直後の不便さを求めてください。

制約

  • 入力は全て整数である。
  • 2 \leq N \leq 10^5
  • 1 \leq M \leq 10^5
  • 1 \leq A_i < B_i \leq N
  • (A_i, B_i) の組は全て異なる。
  • 初期状態における不便さは 0 である。

入力

入力は以下の形式で標準入力から与えられる。

N M
A_1 B_1
A_2 B_2
\vdots
A_M B_M

出力

i = 1, 2, ..., M の順に、i 番目の橋が崩落した直後の不便さを出力せよ。 答えが 32 bit整数型に収まらない場合があることに注意すること。


入力例 1

4 5
1 2
3 4
1 3
2 3
1 4

出力例 1

0
0
4
5
6

例えば、1 から 3 番目の橋が崩落したとき、(1, 2), (1, 3), (2, 4), (3, 4) の島の組について行き来できなくなるので不便さは 4 です。


入力例 2

6 5
2 3
1 2
5 6
3 4
4 5

出力例 2

8
9
12
14
15

入力例 3

2 1
1 2

出力例 3

1

Score : 400 points

Problem Statement

There are N islands and M bridges.

The i-th bridge connects the A_i-th and B_i-th islands bidirectionally.

Initially, we can travel between any two islands using some of these bridges.

However, the results of a survey show that these bridges will all collapse because of aging, in the order from the first bridge to the M-th bridge.

Let the inconvenience be the number of pairs of islands (a, b) (a < b) such that we are no longer able to travel between the a-th and b-th islands using some of the bridges remaining.

For each i (1 \leq i \leq M), find the inconvenience just after the i-th bridge collapses.

Constraints

  • All values in input are integers.
  • 2 \leq N \leq 10^5
  • 1 \leq M \leq 10^5
  • 1 \leq A_i < B_i \leq N
  • All pairs (A_i, B_i) are distinct.
  • The inconvenience is initially 0.

Input

Input is given from Standard Input in the following format:

N M
A_1 B_1
A_2 B_2
\vdots
A_M B_M

Output

In the order i = 1, 2, ..., M, print the inconvenience just after the i-th bridge collapses. Note that the answer may not fit into a 32-bit integer type.


Sample Input 1

4 5
1 2
3 4
1 3
2 3
1 4

Sample Output 1

0
0
4
5
6

For example, when the first to third bridges have collapsed, the inconvenience is 4 since we can no longer travel between the pairs (1, 2), (1, 3), (2, 4) and (3, 4).


Sample Input 2

6 5
2 3
1 2
5 6
3 4
4 5

Sample Output 2

8
9
12
14
15

Sample Input 3

2 1
1 2

Sample Output 3

1