Contest Duration: - (local time) (100 minutes) Back to Home
A - Traveling Budget /

Time Limit: 2 sec / Memory Limit: 256 MB

### 問題文

あなたは、電車とバスを乗り継いで旅行をする計画を立てました。 電車は旅程に沿って通常のきっぷを買うと A 円かかり、乗り放題きっぷを買うと B 円かかります。 バスは旅程に沿って通常のきっぷを買うと C 円かかり、乗り放題きっぷを買うと D 円かかります。

### 制約

• 1 \leq A \leq 1,000
• 1 \leq B \leq 1,000
• 1 \leq C \leq 1,000
• 1 \leq D \leq 1,000
• 入力値はすべて整数である。

### 入力

A
B
C
D


### 入力例 1

600
300
220
420


### 出力例 1

520


したがって、運賃の合計の最小値は 300 + 220 = 520 円となります。

### 入力例 2

555
555
400
200


### 出力例 2

755


### 入力例 3

549
817
715
603


### 出力例 3

1152


Score : 100 points

### Problem Statement

You planned a trip using trains and buses. The train fare will be A yen (the currency of Japan) if you buy ordinary tickets along the way, and B yen if you buy an unlimited ticket. Similarly, the bus fare will be C yen if you buy ordinary tickets along the way, and D yen if you buy an unlimited ticket.

Find the minimum total fare when the optimal choices are made for trains and buses.

### Constraints

• 1 \leq A \leq 1 000
• 1 \leq B \leq 1 000
• 1 \leq C \leq 1 000
• 1 \leq D \leq 1 000
• All input values are integers.

### Input

Input is given from Standard Input in the following format:

A
B
C
D


### Output

Print the minimum total fare.

### Sample Input 1

600
300
220
420


### Sample Output 1

520


The train fare will be 600 yen if you buy ordinary tickets, and 300 yen if you buy an unlimited ticket. Thus, the optimal choice for trains is to buy an unlimited ticket for 300 yen. On the other hand, the optimal choice for buses is to buy ordinary tickets for 220 yen.

Therefore, the minimum total fare is 300 + 220 = 520 yen.

### Sample Input 2

555
555
400
200


### Sample Output 2

755


### Sample Input 3

549
817
715
603


### Sample Output 3

1152