Contest Duration: - (local time) (100 minutes) Back to Home
B - Break Number /

Time Limit: 2 sec / Memory Limit: 256 MB

### 問題文

なお、2 で割っていき、何回あまりが出ずに割れるかを、2 で割れる回数と呼ぶことにします。

• 6 ならば、6 -> 3で、12 で割れます。
• 8 ならば、8 -> 4 -> 2 -> 1で、32 で割れます。
• 3 ならば、02 で割れます。

• 1 ≦ N ≦ 100

### 入力

N


### 入力例 1

7


### 出力例 1

4


422 で割ることができ、これは 1, 2, ..., 7 の中で最も多いです。

### 入力例 2

32


### 出力例 2

32


### 入力例 3

1


### 出力例 3

1


### 入力例 4

100


### 出力例 4

64


Score : 200 points

### Problem Statement

Takahashi loves numbers divisible by 2.

You are given a positive integer N. Among the integers between 1 and N (inclusive), find the one that can be divisible by 2 for the most number of times. The solution is always unique.

Here, the number of times an integer can be divisible by 2, is how many times the integer can be divided by 2 without remainder.

For example,

• 6 can be divided by 2 once: 6 -> 3.
• 8 can be divided by 2 three times: 8 -> 4 -> 2 -> 1.
• 3 can be divided by 2 zero times.

• 1 ≤ N ≤ 100

### Input

Input is given from Standard Input in the following format:

N


### Sample Input 1

7


### Sample Output 1

4


4 can be divided by 2 twice, which is the most number of times among 1, 2, ..., 7.

### Sample Input 2

32


### Sample Output 2

32


### Sample Input 3

1


### Sample Output 3

1


### Sample Input 4

100


### Sample Output 4

64