E - Negative Doubling Editorial /

Time Limit: 2 sec / Memory Limit: 1024 MB

配点 : 800

問題文

N 個の正の整数 A_1, A_2, ..., A_N があります. 高橋君は,これらの整数に対して,次の操作を好きな回数行うことができます:

  • 1 \leq i \leq N を選び,A_i の値を -2 倍にする.

マイナス 2 倍であることに注意してください.

高橋君は,A_1 \leq A_2 \leq ... \leq A_N が成り立つようにしたいです. このために必要な操作の回数の最小値を求めてください.ただし,不可能な場合は -1 を出力してください.

制約

  • 1 \leq N \leq 200000
  • 1 \leq A_i \leq 10^9

入力

入力は以下の形式で標準入力から与えられる.

N
A_1 A_2 ... A_N

出力

答えを出力せよ.


入力例 1

4
3 1 4 1

出力例 1

3

例えば,次のようにすればよいです.

  • i=4 を選び,A_4 の値を -2 倍にする.A_1, A_2, A_3, A_4 はそれぞれ 3, 1, 4, -2 になる.
  • i=1 を選び,A_1 の値を -2 倍にする.A_1, A_2, A_3, A_4 はそれぞれ -6, 1, 4, -2 になる.
  • i=4 を選び,A_4 の値を -2 倍にする.A_1, A_2, A_3, A_4 はそれぞれ -6, 1, 4, 4 になる.

入力例 2

5
1 2 3 4 5

出力例 2

0

操作を一切せずとも A_1 \leq A_2 \leq ... \leq A_N が成り立っています.


入力例 3

8
657312726 129662684 181537270 324043958 468214806 916875077 825989291 319670097

出力例 3

7

Score : 800 points

Problem Statement

There are N positive integers A_1, A_2, ..., A_N. Takahashi can perform the following operation on these integers any number of times:

  • Choose 1 \leq i \leq N and multiply the value of A_i by -2.

Notice that he multiplies it by minus two.

He would like to make A_1 \leq A_2 \leq ... \leq A_N holds. Find the minimum number of operations required. If it is impossible, print -1.

Constraints

  • 1 \leq N \leq 200000
  • 1 \leq A_i \leq 10^9

Input

Input is given from Standard Input in the following format:

N
A_1 A_2 ... A_N

Output

Print the answer.


Sample Input 1

4
3 1 4 1

Sample Output 1

3

One possible solution is:

  • Choose i=4 and multiply the value of A_4 by -2. A_1, A_2, A_3, A_4 are now 3, 1, 4, -2.
  • Choose i=1 and multiply the value of A_1 by -2. A_1, A_2, A_3, A_4 are now -6, 1, 4, -2.
  • Choose i=4 and multiply the value of A_4 by -2. A_1, A_2, A_3, A_4 are now -6, 1, 4, 4.

Sample Input 2

5
1 2 3 4 5

Sample Output 2

0

A_1 \leq A_2 \leq ... \leq A_N holds before any operation is performed.


Sample Input 3

8
657312726 129662684 181537270 324043958 468214806 916875077 825989291 319670097

Sample Output 3

7