F - NRE 解説 /

実行時間制限: 3 sec / メモリ制限: 256 MB

配点 : 1000

問題文

全ての要素が 0 の数列 a = \{a_1, ..., a_N\} と,01 からなる数列 b = \{b_1, ..., b_N\} が与えられます。 どちらも長さは N です。

あなたは Q 種類の操作を行うことが可能です。i 種類目の操作は以下のような動作です。

  • a_{l_i}, a_{l_i + 1}, ..., a_{r_i} を全て 1 に書き換える

Q 種類の操作のうちいくつかを行い,ab のハミング距離, つまり a_i \neq b_i なる i の数を最小化してください。

制約

  • 1 \leq N \leq 200,000
  • b0, 1 からなる
  • 1 \leq Q \leq 200,000
  • 1 \leq l_i \leq r_i \leq N
  • i \neq j ならば l_i \neq l_j または r_i \neq r_j

入力

入力は以下の形式で標準入力から与えられる。

N
b_1 b_2 ... b_N
Q
l_1 r_1
l_2 r_2
:
l_Q r_Q

出力

ハミング距離の最小値を出力してください。


入力例 1

3
1 0 1
1
1 3

出力例 1

1

操作を行うと a = \{1, 1, 1\} になり,ハミング距離は 1 となります。


入力例 2

3
1 0 1
2
1 1
3 3

出力例 2

0

両方の操作を行うと a = \{1, 0, 1\} になり,ハミング距離は 0 となります。


入力例 3

3
1 0 1
2
1 1
2 3

出力例 3

1

入力例 4

5
0 1 0 1 0
1
1 5

出力例 4

2

何も操作を行わないのが最適な時もあります。


入力例 5

9
0 1 0 1 1 1 0 1 0
3
1 4
5 8
6 7

出力例 5

3

入力例 6

15
1 1 0 0 0 0 0 0 1 0 1 1 1 0 0
9
4 10
13 14
1 7
4 14
9 11
2 6
7 8
3 12
7 13

出力例 6

5

入力例 7

10
0 0 0 1 0 0 1 1 1 0
7
1 4
2 5
1 3
6 7
9 9
1 5
7 9

出力例 7

1

Score : 1000 points

Problem Statement

You are given a sequence a = \{a_1, ..., a_N\} with all zeros, and a sequence b = \{b_1, ..., b_N\} consisting of 0 and 1. The length of both is N.

You can perform Q kinds of operations. The i-th operation is as follows:

  • Replace each of a_{l_i}, a_{l_i + 1}, ..., a_{r_i} with 1.

Minimize the hamming distance between a and b, that is, the number of i such that a_i \neq b_i, by performing some of the Q operations.

Constraints

  • 1 \leq N \leq 200,000
  • b consists of 0 and 1.
  • 1 \leq Q \leq 200,000
  • 1 \leq l_i \leq r_i \leq N
  • If i \neq j, either l_i \neq l_j or r_i \neq r_j.

Input

Input is given from Standard Input in the following format:

N
b_1 b_2 ... b_N
Q
l_1 r_1
l_2 r_2
:
l_Q r_Q

Output

Print the minimum possible hamming distance.


Sample Input 1

3
1 0 1
1
1 3

Sample Output 1

1

If you choose to perform the operation, a will become \{1, 1, 1\}, for a hamming distance of 1.


Sample Input 2

3
1 0 1
2
1 1
3 3

Sample Output 2

0

If both operations are performed, a will become \{1, 0, 1\}, for a hamming distance of 0.


Sample Input 3

3
1 0 1
2
1 1
2 3

Sample Output 3

1

Sample Input 4

5
0 1 0 1 0
1
1 5

Sample Output 4

2

It may be optimal to perform no operation.


Sample Input 5

9
0 1 0 1 1 1 0 1 0
3
1 4
5 8
6 7

Sample Output 5

3

Sample Input 6

15
1 1 0 0 0 0 0 0 1 0 1 1 1 0 0
9
4 10
13 14
1 7
4 14
9 11
2 6
7 8
3 12
7 13

Sample Output 6

5

Sample Input 7

10
0 0 0 1 0 0 1 1 1 0
7
1 4
2 5
1 3
6 7
9 9
1 5
7 9

Sample Output 7

1