Contest Duration: - (local time) (100 minutes) Back to Home
D - 756 /

Time Limit: 2 sec / Memory Limit: 1024 MB

### 問題文

ここで、七五数とは約数をちょうど 75 個持つ正の整数です。

### 制約

• 1 \leq N \leq 100
• N は整数である。

### 入力

N


### 出力

N! の約数であるような七五数の個数を出力せよ。

### 入力例 1

9


### 出力例 1

0


9! = 1 \times 2 \times ... \times 9 = 362880 の約数に七五数はありません。

### 入力例 2

10


### 出力例 2

1


10! = 3628800 の約数のうち、七五数であるのは 324001 個です。

### 入力例 3

100


### 出力例 3

543


Score : 400 points

### Problem Statement

You are given an integer N. Among the divisors of N! (= 1 \times 2 \times ... \times N), how many Shichi-Go numbers (literally "Seven-Five numbers") are there?

Here, a Shichi-Go number is a positive integer that has exactly 75 divisors.

### Note

When a positive integer A divides a positive integer B, A is said to a divisor of B. For example, 6 has four divisors: 1, 2, 3 and 6.

### Constraints

• 1 \leq N \leq 100
• N is an integer.

### Input

Input is given from Standard Input in the following format:

N


### Output

Print the number of the Shichi-Go numbers that are divisors of N!.

### Sample Input 1

9


### Sample Output 1

0


There are no Shichi-Go numbers among the divisors of 9! = 1 \times 2 \times ... \times 9 = 362880.

### Sample Input 2

10


### Sample Output 2

1


There is one Shichi-Go number among the divisors of 10! = 3628800: 32400.

### Sample Input 3

100


### Sample Output 3

543