AGC 10 fiEsn

yutakal999

20174 2 H4 H
For International Readers: English editorial starts on page 4.

A : Addition

HEPEL W 2 20HERT L, ZOMIMEEICR S, £oT. N >2 kb, REBZICEIBIIBE TR T
13767\,

W, FMEER 51F, b EOBOPICHBIIBERED 2 2 LI 5D T, &HE 2 OTODOXTIILTZD
MICEESHMZ B LT, RTCOBEMBICTES, Z0LE, FOLIREHETHEIZ 1 DI2TELZDTHY
ThHb,

Y oT, ADEED £ LOHENTENZ DT, O(N) TR 2L TE 2,

B : Boxes

—EORETID BN s HOfBEs x5 & M ich 30T, BLOIKH 2HOMMD S, HfF%z
THMEBTIrB, e k ETEE BrI)E kEEEZITo>T, 2TOEELLBDX)ICTESE 02
HETZ X,

IIT.di=Aip1 — A DB ZEZ S L, —HOBMET {d;} DN, BxIHIE—22 +(n—1) Sh, %
DAY —1 s, koT, {di —k} DIBEH—2% +n THELT, BT O IKTEILHET T LV,

I, K d BATHD, o n OERTH LI EBBEFSTHL2S, ON) THERETH 2,
(XNdi =0 ThaIerMoiid, BEL +n OBEDLT k [BITH 22 EBTH5,)

C : Cleaning

TAATEN r 2RE LT B ERE LTERZ, 510, BUNOREMICH LT, ZOTHME ZOBE
SR DBEORREES FR TR E1cT 5, ZOLE, WIS KR L CIE 2 M5, <
T, ETHVIHE v 1220V T, v ODFTO@EBEEAT > T2 EXIT, v DAZETNDERT 2289 »»
L. ZOIEROM S MRS,

HELOWBHIEE c1,c, .0 LM &, TRMBEMZ v & v OB EWSAAZMEE D, v THO T2
LEMEEDRDIZ D 2D T, EB560 v 6 A%Z 1 DIV 26, HiFHO AL, 20, v Ol
Bl T LM e, T+ 24" = A, L2, koT. JotEln 6. T OESIDZOT, HizHRA2
TRBS A 2 0TI L b0r 24T iz n L e WET L L,

2%0, L=2%"T r LT, 105 k $TORM i DS ¢; METHAS L2, 7% LFAKNZDEL

SHEHTEULE L 20K) AT BRAT min (maxc;, 52) HTHZ 2 EHRELOT, OHE
BAESHITTE 5,

PlEED, FEMIN LT, 20T OMER» S5 DIEROERZ LT 2 2 L TELDT, RIFERDTD
FEED SIEICIEL T 22T O(N) T#L 2 EnTE 3,

D : Decrementing

B OBIECEREOREE DAL, DF), GCD THOALEEDI LEEAL, COLE, T (A4; — 1)
DHFTHKDYLE 20T, HEIZ LT, MEFICHEH L TBREZRER 2,

T, A1 26 Ap, ORIEFEEDHIUE, 2D GCD bHFHAED T, GCD THl- 74 b KB OMEF IF ANEK
bokv, 512, A 5 A, DGCD B 1 DEE, Al Ly —OWHNH 2, COWHZMRZ L, B
TOXITHAENITE S,

1) A1 5 A, OFIHEBERES % L E

BEP—2UEH B0, e —20BEAT -1 L, HFICHET, 2oL &, BEMCEHED 1 U EHD, #
TERIZIZFEDS 2 DB EH 5720, HTOEERD GCD bAHE%R 2, ko T, HELSR-TL 245611,
Z DN S WEDFTEMED 2 7-0, BFRINZHEVET I ETUHETH 3,

i) Ay 5 Ay OFIHEBMEEMED B & &

HED 2 DD EH 27 51E, E)Ro THHTICHE L2 L SIBHEEEMED 2720, i) kb, BFLBICE
5, L, BEPLEIE 1 2HBLEF, Z20FTHZHTI LT, GCD MBI L 270, BT LI
oz, koT, o8&, BFAMBICE 2080 —-RICEE 2000 T G0 T, Zhzf#hiRd T
ETEL L DD D . GCD MBI & 2 RIEIIE 4 O(log(max A;)) [z DT, +omEndicE) <,

PDEXD, O(Nlog(max A;)) TZORMEZMS ZLWTES,

E : Rearranging

£9. BFOREFEEZSD, A1, Ag, ..., Ay DIHICH ATV LT 2, LWICEREDADIERF 2 AE
Z6N57d, ged(As, Aj) # 1 THIUE, T s OMNI AR IZZLL 22\,

koT i <j,ged(Ay, Aj) #1 %% (i,5) IKNLT, i —j EAMIEESZETDAGHTE, 2D
PR R YA VIEF CREER KDL DOPRD 2 DD LD, JIFHICRO SN DT, BFORETFIXMHEH
iZkdons,

koT, RFORUERIEF ZRDIUT L\, BRED» S R 2HEE S 1T L T, FEERIC GCD 28 1 TXHW
RoUERED, LI I L THESRT T 7% g(S) LBE. g(S) »HERES T 7Th 2 & 5 AL EE
BEPRZ LTS, ZDEE, ROBRTFOHEDLS I LD L IHIC, FHIEES T L OIEFIE ZIULHRTFD
ZTFIEFRELDOT, ZNZENMIITEZ T I,

TITEL T, DESES S KREFEED TRFOBRMEOBICEHIERNM L2 XHICT 5, 7L,
BEPEDLIICEMELTCHREDN X LHEVICELE L TEARS RV, EWIMEEEZSL, ZOBZL LR
BMEFD—>% f(S,X) LiE<,

F9. X tDGCD 2 1 THRVWILDOHMTRIDILE z £T2%, ZDEE, BHEICHHEIE ¢ M ETRS
TR 5w, g(S) MWElkiAzy, o ZIAMET 2 DFSEFICZ > TEPOEKEZWRE Z LT, BFD
BEICfT> T, ElE 2 DEFICTEILENTES, koT, f(S,X) DEHHIF z L LTk, TDEE,
S\{z} DFHEFEES T TOMEFBRENE, ZhE2ELOREADES LT (S, X) BWESNE 0,
ZDOWEFEFHEZDH I LIZT B,

FP. T 2AANEE ZOREN y THZLET 2, (z,y) =1 %51 ¢ &y ZANFALI DTS
2720, HoNITRBETH S, Wi, (z,y) A1 %BHI1E, EDXHITLTH z & y DHFIIANEZ S Rz
O, T OWRE LTE, BN ¢ EAVIZETRZVLIENTRELWR, 20, f(T,z) PRETH B LA
a5,

Dhzgsedz e, f(S,X) 13 X LD GCD» 1 THRWILTHRANDIL x ZHICL, S 26 z ZHH R
Wi & EOFERERS T 1N % f(T,z) ZB4IGEE L 72D L il kv,

ROBEFONTIE S = {A1, A2, ..., An} (2L, S 13 multiset € LTEZ3) ELT, f(S,0) TH
Lh 6, SEHOITCEIY Bk < EEIEDS N [l Sl oy 2 Ko 2 #:EHY O(Nlog N) FEETHEEA DT, 2k
LT O(N?log N) Tl S &3 TE 5,

T L, SR Z RO DB, HEPLOTRTORDERBZRHAEL ., B L RRBDMILZ2K>TH
77 %WMETILDTH IS, ZOFBORENEDFEIC O(Vmax A;) 2290 %, LT, &fkE LTI,
O(N(Nlog N + vmax A;)) L%k 35,

F : Tree Game

BANCEEESEZEC HNZ —-2lET 2, ZOLE, FHEMIIOWT O(N) THRINEL v, TIT,
K797 THB05, EQOHMIINLTLZI»oA2 L LAY -3 —RICEEL T LICHEET 3,

ZOBALTERZRE LT, REBMERELTEZZ, ZOLE, DO X)) ICHHRICETEN v 2L
T f(v) ZED 3,

e VDETHLLEE, f(v) = Ay
o v WETHRVEE, v DEEDTTD f(v) BRT A, Kilik 5. f(v) =inf
Z2HTHhOUASL, f(v) = A,

CDEE ETRVHR 0 LT, v Z2IRETZEHHARTo ICHZENTIHRO T — L DK E f(v) = inf
DE) PO T B T L RIFINIZR T,

T, v DEBEOLRTRTEDR, f(v) =inf B, H5T ¢ T A< Ay %2, ZOLE, LEFiIZ
v BT c IKEPTIETHEDI LAITE S, #iT, f(v) = Ay DIRFE, EDTEHM c ITRLTH A > A,
ERB1D, BFREDIIICLTHBOIENTER L, koT, ZOEAIRRIN.,

RIZ, v DFTRTDTT f DEPEE->TVBELEEXERLS, COLE, f(u) =inf THEHEK v ICHD
TEBTVBLICH L0, 20X REM v KAFREPTIENTER Y, 510, 29 THROVIEE u i
LT, 8F2 u KD Ll EICETIE v KEID»TOVBRETH 2, BERLIE, BT u OFICEHH»T
LE u ERETZHAARLE I THARRTFBLTH L0 0, BFEVHEOICIZEFT u 25 v NEL S
VoD, UL, #imu 2RETIHIRICECT, BFHHTH S v DAVMLZTTH 06, £z v b
5 u~NEoLELTH, ZOEAARNLZTED» L ZGER3AETFHETHLILIEDLYI R, XoT, u b
ZOFNTo7ELTH, u OROMEEEIS TT T, K v IKRZBEBDH 570, BHRIRG, LoT,
BFlIE u 2o v ICEHPTOPRETDH 5,

DEED, v DTXRTOFT f DEPEELE>TVI2EAEDL, v DFBTRTETHLEGHLFEL L) I
THIELVTEL LD, B4 REI N,

ST, BD LI % f OEIIRMAEREZRD SRR Z LT O(N) TROZIENTEL LD, iz
TRTRT LT, O(N?) TS S8 TE B,

AGC 10 Editorial

yutakal999

February 4th, 2017

A : Addition

Suppose that after the operations you have only one integer. This integer is obtained as a
sum of two integers of the same parity, so it must be even. This means that the sum of A; is
even.

On the other hand, if the sum of A; is even, we can prove that the answer is always " YES”.
In this case initially there are even number of odd integers. Divide them into pairs and perform
the operation for each pair. This way all integers will be even and after that we can add any
pair of integers.

Thus, we just need to check whether the sum of A; is even, and it can be done in O(N).

B : Boxes

In each operation we remove stones. Let s be the total number of stones. Obviously,

s must be a multiple of % Let k = s/ w We want to check whether after exactly k
operations, the number of stones in each box can be the same.

Let d; = A;+1 — A;, the difference of number of stones in adjacent boxes. Usually an
operations reduces this number by 1, but one of the values of {d;} is incremented by n —1. It
means that for some non-negative integer x, d; — (k —z) + (n — 1)z = 0 or k — d; = nx (here
x is the number of ”"unusual” operations happened for d;). Thus, for each i, k — d; must be
non-negative and it must be a multiple of n. We can also prove that this condition is sufficient:
the sum of (k — d;)/n is always k because the sum of d; is zero. We can solve this problem in

O(N) time.

C : Cleaning

Let’s assign labels to the edges. Initially all the edges are labeled with zero. When an
operation is performed on a path connecting two different leaves, we increment the labels of
all edges on the path by one.

When can we remove all stones? Each leaf vertex on a path is incident to an edge on the
path, and each non-leaf vertex on a path is incident to two edges on the path. Thus, we can

see that this is equivalent to the following:

e For each leaf v, the label assigned to the only edge incident to v is A,.

e For each non-leaf vertex v, the sum of labels assigned to the edges incident to v is 2A4,.

Now, consider the tree as a rooted tree. From the conditions above, we can uniquely
determine the labels of all edges in the order from leaves to the root. Note that this is not
always possible - make sure to check that all labels are non-negative and the condition is
satisfied at the root.

In case we can successfuly assign labels, how can we check whether we can decompose it
into a set of paths connecting leaves? Consider a certain non-leaf vertex, and let ¢y, ..., ¢ be
the labels assigned to these edges. These Y ¢; things must be separated into pairs, and each
pair must consist of two things from different edges. Thus, the condition is that,) ¢; must
be even and for each i, ¢; < > ¢;/2 must be satisfied.

The solution above works in O(N) time.

D : Decrementing

First consider an easier version of problem: we don’t divide the integers by their GCD. In
this case, obviously the answer only depends on the parity of the total number of stones. The
original problem also has something to do with parities.

Suppose that in your turn all integers are odd. If all integers are one, you can’t perform any
operations and you lose. If not, you can perform an operation, and after the operation exactly
one integer is even and the others are odd (here the GCD doesn’t matter - since GCD is odd
in this case, it doesn’t change the parities). However, if your opponent perform an operation
on the only even number, you will again face the situation where all numbers are odd, and
you will lose eventually.

If exactly one integer in your turn is even, you can always win. By performing an operation
in the only even number, you can force the opponent to lose (as described above).

By similar observations, we get the following:

1. In case there are odd number of even integers, you win. Your strategy is as follows. In
your turn you choose one of even numbers and perform an operation on it. After the
operation there will be two or more odd integers, so the GCD operation doesn’t change
the parities. Thus, in the opponent’s turn there will be even number of even integers,
and in your next turn you will again have odd number of even integers. By repeating
this strategy, you always win.

2. In case there are even number of even integers and two or more odd integers, you lose.
No matter what you do, after your operation the opponent will be given a winning state,
as described above.

3. In case there are even number of even integers and exactly one odd integer. In this
case, it’s clear that if you perform an operation on one of even integers, you lose (your
opponent will face a winning state). Thus, you must perform an operation on the odd
integer, and after that divide all integers by their GCD. It’s not clear what happens in

this case - just simulate the game and solve the problem recursively.

When the simulation happens, all the integers are divided by at least two. Thus, the
number of simulations is O(log(max A;)). The time complexity of the algorithm above is
O(N log(max A;)).

E : Rearranging

Let’s think about the second player’s optimal strategy first. He wants to maximize the
permutation by swapping two adjacent coprime elements. If two numbers x and y are in
the permutation in this order, and if they are not coprime, he can never change the relative
order of these elements. We can also prove that this condition is sufficient: he can get any
permutation that satisfies the condition above by repeating operations.

For convenience, assume that the input is sorted (4; < --- < Ay). Construct a graph with
N vertices. There is an edge between vertices ¢ and j if A; and A; are not coprime. After the
first player decides his arrangement, each edge in this graph is directed. The second player
wants to find the greatest topological sort of this directed graph.

Next, let’s think about the first player’s optimal strategy. From the observations above,
we can handle each connected component independently. When we merge two connected
components, we first get two sequences from each connected component, and find the greatest
sequence we can get by merging the two sequences. From now, we assume that the graph is
connected.

Let x be the smallest element in the permutation. The first player can force that, even after
the second player’s operations, the first element of the permutation becomes z. For example,
take an arbitrary spanning tree of the graph. Arrange the numbers according to the DFS-
order of this spanning tree. Then, each element is topologically greater than x in the directed
graph, so the second player can’t change the first element. Threrefore the first player should
put z first.

Then, remove = from the graph and again compute connected components. For the same
reason as above, we can consider each connected component independently. The only difference
is that, if y comes first in a connected component, y must be non-coprime to = (i.e., z and y
must be adjacent in the graph). Otherwise the second player can swap x and y and make the
permutation greater. We do this recursively in the same manner.

How can we implement it efficiently? Run dfs in the graph and construct DFS-trees of the
graph. When there are multiple adjacent vertices, visit the smallest vertex first. This way, we

get a DFS-tree with the following properties:

e Fach edge connects an ancestor and a descendant (like all DFS-trees).
e 1 is the smallest element in the subtree rooted at x.
e After we remove z, we can get new connected components as the subtrees rooted at z’s

children.

This is exactly what we need to compute. After computing this DFS tree, we assign a

sequence to each vertex. In order to compute the sequence assigned to vertex x, first we find
the lexicographically greatest sequence that can be obtained by merging sequences assigned
to x’s childrem. Then, append x to the front of this sequence, and this is the sequence we
want to assign for x. We compute this from leaves to the root, and the sequence assigned to
the root is the answer of the problem.

The complexity of this algorithm is O(N? log max A;).

F : Tree Game

Suppose that Takahashi initially puts the piece on vertex r. Let r be the root of the tree.
For each vertex v, we define state(v) as follows:

Consider a subtree rooted at v. The two players play the game using this subtree (they are
not allowed to move the piece out of the subtree), and initially the piece is at vertex v. If the
first player can win in this game, define state(v) = W. Otherwise state(v) = L.

Note that state(r) gives the result of the entire game when the piece is initially at r.

We claim the following:

1. If there exists a child ¢ of v such that A. < A, and state(c) = L, then state(v) = W.
2. Otherwise, state(v) = L. (In particular, if v is a leaf, state(v) = L.)

The proof of 1. Suppose that this is your turn and the piece is currently at v. First you
take a stone from v (this is possible because A, is not zero) and move the piece to c. Whenever
the opponent tries to move the piece from ¢ to v, you can refuse to do that by moveing it back
to ¢ (this is possible because A, > A.). This way, your opponent is forced to play the game
within the subtree rooted at c¢. Since state(c) = L, your opponent loses and you win. (Strictly
speaking, your opponent can also reduce the value of A, by moving the piece between ¢ and
v back and forth, but this doesn’t change the state of vertex c.)

The proof of 2. If v is a leaf, you can’t move the piece and you lose. Otherwise you
can move the token from v to one of v’s children, w. There are two cases: state(w) = W or
Ay > A, If state(w) = W, your opponent never moves the piece back to v and play the rest
of the game completely within the subtree rooted at w. Since state(w) = W, this way your
opponent wins and you lose. If A,, > A,, your opponent refuses to move the piece from v to
¢ by moving it back to v (this is possible because A,, > A,). Thus, you lose in this case.

This way, for a fixed position of the initial piece, we can solve the problem in O(N). In

total the complexity of this solution is O(N?). (Exercise: can you improve it to O(N)?)

