Submission #19559283
Source Code Expand
Copy
#include <bits/stdc++.h>
using namespace std;
/*
#include <atcoder/all>
using namespace atcoder;
*/
/*
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using bll = boost::multiprecision::cpp_int;
using bdouble = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<100>>;
using namespace boost::multiprecision;
*/
#if defined(LOCAL_TEST) || defined(LOCAL_DEV)
#define BOOST_STACKTRACE_USE_ADDR2LINE
#define BOOST_STACKTRACE_ADDR2LINE_LOCATION /usr/local/opt/binutils/bin/addr2line
#define _GNU_SOURCE 1
#include <boost/stacktrace.hpp>
#endif
#ifdef LOCAL_TEST
namespace std {
template<typename T> class dvector : public std::vector<T> {
public:
dvector() : std::vector<T>() {}
explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n, value) {}
dvector(const std::vector<T>& v) : std::vector<T>(v) {}
dvector(const std::initializer_list<T> il) : std::vector<T>(il) {}
dvector(const std::string::iterator first, const std::string::iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::iterator first, const typename std::vector<T>::iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::reverse_iterator first, const typename std::vector<T>::reverse_iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::const_iterator first, const typename std::vector<T>::const_iterator last) : std::vector<T>(first, last) {}
dvector(const typename std::vector<T>::const_reverse_iterator first, const typename std::vector<T>::const_reverse_iterator last) : std::vector<T>(first, last) {}
T& operator[](size_t n) {
if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n);
}
const T& operator[](size_t n) const {
if (this->size() <= n) { std::cerr << boost::stacktrace::stacktrace() << '\n' << "vector::_M_range_check: __n (which is " << n << ") >= this->size() (which is " << this->size() << ")" << '\n'; } return this->at(n);
}
};
}
class dbool {
private:
bool boolvalue;
public:
dbool() : boolvalue(false) {}
dbool(bool b) : boolvalue(b) {}
operator bool&() { return boolvalue; }
operator const bool&() const { return boolvalue; }
};
#define vector dvector
#define bool dbool
class SIGFPE_exception : std::exception {};
class SIGSEGV_exception : std::exception {};
void catch_SIGFPE([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGFPE_exception(); }
void catch_SIGSEGV([[maybe_unused]] int e) { std::cerr << boost::stacktrace::stacktrace() << '\n'; throw SIGSEGV_exception(); }
signed convertedmain();
signed main() { signal(SIGFPE, catch_SIGFPE); signal(SIGSEGV, catch_SIGSEGV); return convertedmain(); }
#define main() convertedmain()
#endif
#ifdef LOCAL_DEV
template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::pair<T1, T2>& p) {
return s << "(" << p.first << ", " << p.second << ")"; }
template <typename T, size_t N> std::ostream& operator<<(std::ostream& s, const std::array<T, N>& a) {
s << "{ "; for (size_t i = 0; i < N; ++i){ s << a[i] << "\t"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::set<T>& se) {
s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::multiset<T>& se) {
s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}"; return s; }
template<typename T1, typename T2> std::ostream& operator<<(std::ostream& s, const std::map<T1, T2>& m) {
s << "{\n"; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << "\n"; } s << "}"; return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::deque<T>& v) {
for (size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::vector<T>& v) {
for (size_t i = 0; i < v.size(); ++i){ s << v[i]; if (i < v.size() - 1) s << "\t"; } return s; }
template<typename T> std::ostream& operator<<(std::ostream& s, const std::vector<std::vector<T>>& vv) {
s << "\\\n"; for (size_t i = 0; i < vv.size(); ++i){ s << vv[i] << "\n"; } return s; }
void debug_impl() { std::cerr << '\n'; }
template<typename Head, typename... Tail> void debug_impl(Head head, Tail... tail) { std::cerr << " " << head << (sizeof...(tail) ? "," : ""); debug_impl(tail...); }
#define debug(...) do { std::cerr << ":" << __LINE__ << " (" << #__VA_ARGS__ << ") ="; debug_impl(__VA_ARGS__); } while (false)
constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return local; }
#else
#define debug(...) do {} while (false)
constexpr inline long long prodlocal([[maybe_unused]] long long prod, [[maybe_unused]] long long local) { return prod; }
#endif
//#define int long long
using ll = long long;
//INT_MAX = (1<<31)-1 = 2147483647, INT64_MAX = (1LL<<63)-1 = 9223372036854775807
constexpr ll INF = numeric_limits<ll>::max() == INT_MAX ? (ll)1e9 + 7 : (ll)1e18;
constexpr ll MOD = (ll)1e9 + 7; //primitive root = 5
//constexpr ll MOD = 998244353; //primitive root = 3
constexpr double EPS = 1e-9;
constexpr ll dx[4] = {1, 0, -1, 0};
constexpr ll dy[4] = {0, 1, 0, -1};
constexpr ll dx8[8] = {1, 0, -1, 0, 1, 1, -1, -1};
constexpr ll dy8[8] = {0, 1, 0, -1, 1, -1, 1, -1};
#define rep(i, n) for(ll i=0, i##_length=(n); i< i##_length; ++i)
#define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i)
#define rrep(i, n) for(ll i=(n)-1; i>=0; --i)
#define rrepeq(i, n) for(ll i=(n) ; i>=1; --i)
#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
void p() { std::cout << '\n'; }
template<typename Head, typename... Tail> void p(Head head, Tail... tail) { std::cout << head << (sizeof...(tail) ? " " : ""); p(tail...); }
template<typename T> inline void pv(std::vector<T>& v) { for(ll i=0, N=v.size(); i<N; i++) std::cout << v[i] << " \n"[i==N-1]; }
template<typename T> inline bool chmax(T& a, T b) { return a < b && (a = b, true); }
template<typename T> inline bool chmin(T& a, T b) { return a > b && (a = b, true); }
template<typename T> inline void uniq(std::vector<T>& v) { v.erase(std::unique(v.begin(), v.end()), v.end()); }
template<typename T> inline ll sz(T& v) { return v.size(); }
/*-----8<-----template-----8<-----*/
map<ll,ll> inv_cache;
struct Modint{
unsigned long long num = 0;
constexpr Modint() noexcept {}
//constexpr Modint(const Modint &x) noexcept : num(x.num){}
inline constexpr operator ll() const noexcept { return num; }
inline constexpr Modint& operator+=(Modint x) noexcept { num += x.num; if(num >= MOD) num -= MOD; return *this; }
inline constexpr Modint& operator++() noexcept { if(num == MOD - 1) num = 0; else num++; return *this; }
inline constexpr Modint operator++(int) noexcept { Modint ans(*this); operator++(); return ans; }
inline constexpr Modint operator-() const noexcept { return Modint(0) -= *this; }
inline constexpr Modint& operator-=(Modint x) noexcept { if(num < x.num) num += MOD; num -= x.num; return *this; }
inline constexpr Modint& operator--() noexcept { if(num == 0) num = MOD - 1; else num--; return *this; }
inline constexpr Modint operator--(int) noexcept { Modint ans(*this); operator--(); return ans; }
inline constexpr Modint& operator*=(Modint x) noexcept { num = (unsigned long long)(num) * x.num % MOD; return *this; }
inline Modint& operator/=(Modint x) noexcept { return operator*=(x.inv()); }
template<class T> constexpr Modint(T x) noexcept {
using U = typename conditional<sizeof(T) >= 4, T, int>::type;
U y = x; y %= U(MOD); if(y < 0) y += MOD; num = (unsigned long long)(y);
}
template<class T> inline constexpr Modint operator+(T x) const noexcept { return Modint(*this) += x; }
template<class T> inline constexpr Modint& operator+=(T x) noexcept { return operator+=(Modint(x)); }
template<class T> inline constexpr Modint operator-(T x) const noexcept { return Modint(*this) -= x; }
template<class T> inline constexpr Modint& operator-=(T x) noexcept { return operator-=(Modint(x)); }
template<class T> inline constexpr Modint operator*(T x) const noexcept { return Modint(*this) *= x; }
template<class T> inline constexpr Modint& operator*=(T x) noexcept { return operator*=(Modint(x)); }
template<class T> inline constexpr Modint operator/(T x) const noexcept { return Modint(*this) /= x; }
template<class T> inline constexpr Modint& operator/=(T x) noexcept { return operator/=(Modint(x)); }
inline Modint inv() const noexcept { return inv_cache.count(num) ? inv_cache[num] : inv_cache[num] = inv_calc(); }
inline constexpr ll inv_calc() const noexcept { ll x = 0, y = 0; extgcd(num, MOD, x, y); return x; }
static inline constexpr ll extgcd(ll a, ll b, ll &x, ll &y) noexcept { ll g = a; x = 1; y = 0; if(b){ g = extgcd(b, a % b, y, x); y -= a / b * x; } return g; }
inline constexpr Modint pow(ll x) const noexcept { Modint ans = 1, cnt = x>=0 ? *this : inv(); if(x<0) x = -x; while(x){ if(x & 1) ans *= cnt; cnt *= cnt; x /= 2; } return ans; }
static inline constexpr ll get_mod() { return MOD; }
};
std::istream& operator>>(std::istream& is, Modint& x){ ll a; is>>a; x = a; return is; }
inline constexpr Modint operator""_M(unsigned long long x) noexcept { return Modint(x); }
std::vector<Modint> fac(1, 1), inv(1, 1);
inline void reserve(size_t a){
if(fac.size() >= a) return;
if(a < fac.size() * 2) a = fac.size() * 2;
if(a >= MOD) a = MOD;
fac.reserve(a);
while(fac.size() < a) fac.push_back(fac.back() * Modint(fac.size()));
inv.resize(fac.size());
inv.back() = fac.back().inv();
for(ll i = inv.size() - 1; !inv[i - 1]; i--) inv[i - 1] = inv[i] * i;
}
inline Modint factorial(ll n){ if(n < 0) return 0; reserve(n + 1); return fac[n]; }
inline Modint nPk(ll n, ll r){
if(r < 0 || n < r) return 0;
if(n >> 24){ Modint ans = 1; for(ll i = 0; i < r; i++) ans *= n--; return ans; }
reserve(n + 1); return fac[n] * inv[n - r];
}
inline Modint nCk(ll n, ll r){ if(r < 0 || n < r) return 0; r = min(r, n - r); reserve(r + 1); return inv[r] * nPk(n, r); }
inline Modint nHk(ll n, ll r){ return nCk(n + r - 1, n - 1); } //n種類のものから重複を許してr個選ぶ=玉r個と仕切りn-1個
inline Modint catalan(ll n){ reserve(n * 2 + 1); return fac[n * 2] * inv[n] * inv[n + 1]; }
////
//[lib]形式的冪級数FPS.cpp
//[depends on]modint.cpp
template< typename T >
struct FormalPowerSeries : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeries;
using MULT = function< vector< T >(P, P) >;
using FFT = function< void(P &) >;
using SQRT = function< T(T) >;
static MULT &get_mult() {
static MULT mult = nullptr;
return mult;
}
static void set_mult(MULT f) {
get_mult() = f;
}
static FFT &get_fft() {
static FFT fft = nullptr;
return fft;
}
static FFT &get_ifft() {
static FFT ifft = nullptr;
return ifft;
}
static void set_fft(FFT f, FFT g) {
get_fft() = f;
get_ifft() = g;
if(get_mult() == nullptr) {
auto mult = [&](P a, P b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, T(0));
b.resize(sz, T(0));
get_fft()(a);
get_fft()(b);
for(int i = 0; i < sz; i++) a[i] *= b[i];
get_ifft()(a);
a.resize(need);
return a;
};
set_mult(mult);
}
}
static SQRT &get_sqrt() {
static SQRT sqr = nullptr;
return sqr;
}
static void set_sqrt(SQRT sqr) {
get_sqrt() = sqr;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
shrink();
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
shrink();
return *this;
}
P &operator*=(const T &v) {
const int n = (int) this->size();
for(int k = 0; k < n; k++) (*this)[k] *= v;
return *this;
}
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
assert(get_mult() != nullptr);
auto ret = get_mult()(*this, r);
return *this = P(begin(ret), end(ret));
}
P &operator%=(const P &r) {
return *this -= *this / r * r;
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
P pre(int sz) const {
return P(begin(*this), begin(*this) + min((int) this->size(), sz));
}
P operator>>(int sz) const {
if(this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
T operator()(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
// https://opt-cp.com/fps-implementation/
// multiply and divide (1 + cz^d)
P mul(const ll d, const T c) {
P ret(*this);
int n = ret.size();
if (c == T(1)) for(int i=n-d-1; i>=0; --i) ret[i+d] += ret[i];
else if (c == T(-1)) for(int i=n-d-1; i>=0; --i) ret[i+d] -= ret[i];
else for(int i=n-d-1; i>=0; --i) ret[i+d] += ret[i] * c;
return ret;
}
P div(const ll d, const T c) {
P ret(*this);
int n = ret.size();
if (c == T(1)) for(int i=0; i<n-d; ++i) ret[i+d] -= ret[i];
else if (c == T(-1)) for(int i=0; i<n-d; ++i) ret[i+d] += ret[i];
else for(int i=0; i<n-d; ++i) ret[i+d] -= ret[i] * c;
return ret;
}
// sparse
P mul(vector<pair<ll, T>> g) {
if ((int)g.size() == 2 && g[0] == pair<ll, T>(0, 1))
return mul(g[1].first, g[1].second);
P ret(*this);
int n = ret.size();
auto [d, c] = g.front();
if (d == 0) g.erase(g.begin());
else c = 0;
for(int i=n-1; i>=0; i--){
ret[i] *= c;
for (auto&& [j, b] : g) {
if (j > i) break;
ret[i] += ret[i-j] * b;
}
}
return ret;
}
// sparse, required: "g[0] == (0, c)" and "c != 0"
P div(vector<pair<ll, T>> g) {
if ((int)g.size() == 2 && g[0] == pair<ll, T>(0, 1))
return div(g[1].first, g[1].second);
P ret(*this);
int n = ret.size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
g.erase(g.begin());
for(int i=0; i<n; i++) {
for (auto&& [j, b] : g) {
if (j > i) break;
ret[i] -= ret[i-j] * b;
}
ret[i] /= c;
}
return ret;
}
P diff() const;
P integral() const;
// F(0) must not be 0
P inv_fast() const;
P inv(int deg = -1) const;
// F(0) must be 1
P log(int deg = -1) const;
P sqrt(int deg = -1) const;
// F(0) must be 0
P exp_fast(int deg = -1) const;
P exp(int deg = -1) const;
P pow(int64_t k, int deg = -1) const;
P mod_pow(int64_t k, P g) const;
P taylor_shift(T c) const;
};
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv_fast() const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
P res{T(1) / (*this)[0]};
for(int d = 1; d < n; d <<= 1) {
P f(2 * d), g(2 * d);
for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
for(int j = 0; j < d; j++) g[j] = res[j];
get_fft()(f);
get_fft()(g);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) {
f[j] = 0;
f[j + d] = -f[j + d];
}
get_fft()(f);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
get_ifft()(f);
for(int j = 0; j < d; j++) f[j] = res[j];
res = f;
}
return res.pre(n);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::inv(int deg) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.inv_fast();
}
P ret({T(1) / (*this)[0]});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::log(int deg) const {
assert((*this)[0] == 1);
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::sqrt(int deg) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2);
if(ret.empty()) return {};
ret = ret << (i / 2);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
P ret;
if(get_sqrt() == nullptr) {
assert((*this)[0] == T(1));
ret = {T(1)};
} else {
auto sqr = get_sqrt()((*this)[0]);
if(sqr * sqr != (*this)[0]) return {};
ret = {T(sqr)};
}
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp_fast(int deg) const {
if(deg == -1) deg = this->size();
assert((*this)[0] == T(0));
P inv;
inv.reserve(deg + 1);
inv.push_back(T(0));
inv.push_back(T(1));
auto inplace_integral = [&](P &F) -> void {
const int n = (int) F.size();
auto mod = T::get_mod();
while((int) inv.size() <= n) {
int i = inv.size();
inv.push_back((-inv[mod % i]) * (mod / i));
}
F.insert(begin(F), T(0));
for(int i = 1; i <= n; i++) F[i] *= inv[i];
};
auto inplace_diff = [](P &F) -> void {
if(F.empty()) return;
F.erase(begin(F));
T coeff = 1, one = 1;
for(int i = 0; i < (int) F.size(); i++) {
F[i] *= coeff;
coeff += one;
}
};
P b{1, 1 < (int) this->size() ? (*this)[1] : T(0)}, c{1}, z1, z2{1, 1};
for(int m = 2; m < deg; m *= 2) {
auto y = b;
y.resize(2 * m);
get_fft()(y);
z1 = z2;
P z(m);
for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
get_ifft()(z);
fill(begin(z), begin(z) + m / 2, T(0));
get_fft()(z);
for(int i = 0; i < m; ++i) z[i] *= -z1[i];
get_ifft()(z);
c.insert(end(c), begin(z) + m / 2, end(z));
z2 = c;
z2.resize(2 * m);
get_fft()(z2);
P x(begin(*this), begin(*this) + min< int >(this->size(), m));
inplace_diff(x);
x.push_back(T(0));
get_fft()(x);
for(int i = 0; i < m; ++i) x[i] *= y[i];
get_ifft()(x);
x -= b.diff();
x.resize(2 * m);
for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
get_fft()(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
get_ifft()(x);
x.pop_back();
inplace_integral(x);
for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
fill(begin(x), begin(x) + m, T(0));
get_fft()(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
get_ifft()(x);
b.insert(end(b), begin(x) + m, end(x));
}
return P(begin(b), begin(b) + deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::exp(int deg) const {
assert((*this)[0] == T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
if(get_fft() != nullptr) {
P ret(*this);
ret.resize(deg, T(0));
return ret.exp_fast(deg);
}
P ret({T(1)});
for(int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
}
return ret.pre(deg);
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::pow(int64_t k, int deg) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
if(i * k > deg) return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if(ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::mod_pow(int64_t k, P g) const {
P modinv = g.rev().inv();
auto get_div = [&](P base) {
if(base.size() < g.size()) {
base.clear();
return base;
}
int n = base.size() - g.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(k > 0) {
if(k & 1) {
ret *= x;
ret -= get_div(ret) * g;
}
x *= x;
x -= get_div(x) * g;
k >>= 1;
}
return ret;
}
template< typename T >
typename FormalPowerSeries< T >::P FormalPowerSeries< T >::taylor_shift(T c) const {
int n = (int) this->size();
vector< T > fact(n), rfact(n);
fact[0] = rfact[0] = T(1);
for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
rfact[n - 1] = T(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
P p(*this);
for(int i = 0; i < n; i++) p[i] *= fact[i];
p = p.rev();
P bs(n, T(1));
for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++) p[i] *= rfact[i];
return p;
}
////
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
vector< Mint > dw, idw;
int max_base;
Mint root;
NumberTheoreticTransformFriendlyModInt() {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
root = 2;
while(root.pow((mod - 1) >> 1) == 1) root += 1;
assert(root.pow(mod - 1) == 1);
dw.resize(max_base);
idw.resize(max_base);
for(int i = 0; i < max_base; i++) {
dw[i] = -root.pow((mod - 1) >> (i + 2));
idw[i] = Mint(1) / dw[i];
}
}
void ntt(vector< Mint > &a) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = n; m >>= 1;) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j] * w;
a[i] = x + y, a[j] = x - y;
}
w *= dw[__builtin_ctz(++k)];
}
}
}
void intt(vector< Mint > &a, bool f = true) {
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
assert(__builtin_ctz(n) <= max_base);
for(int m = 1; m < n; m *= 2) {
Mint w = 1;
for(int s = 0, k = 0; s < n; s += 2 * m) {
for(int i = s, j = s + m; i < s + m; ++i, ++j) {
auto x = a[i], y = a[j];
a[i] = x + y, a[j] = (x - y) * w;
}
w *= idw[__builtin_ctz(++k)];
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
//高速フーリエ変換
//計算量 O((n+m)log(n+m))
namespace FastFourierTransform {
using real = double;
struct C {
real x, y;
C() : x(0), y(0) {}
C(real x, real y) : x(x), y(y) {}
inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }
inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }
inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }
inline C conj() const { return C(x, -y); }
};
int base = 1;
vector< C > rts = {{0, 0},{1, 0}};
vector< int > rev = {0, 1};
void ensure_base(int nbase) {
if(nbase <= base) return;
rev.resize(1 << nbase);
rts.resize(1 << nbase);
for(int i = 0; i < (1 << nbase); i++) {
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
}
while(base < nbase) {
real angle = M_PI * 2.0 / (1 << (base + 1));
for(int i = 1 << (base - 1); i < (1 << base); i++) {
rts[i << 1] = rts[i];
real angle_i = angle * (2 * i + 1 - (1 << base));
rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
}
++base;
}
}
void fft(vector< C > &a, int n) {
assert((n & (n - 1)) == 0);
int zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for(int i = 0; i < n; i++) {
if(i < (rev[i] >> shift)) {
swap(a[i], a[rev[i] >> shift]);
}
}
for(int k = 1; k < n; k <<= 1) {
for(int i = 0; i < n; i += 2 * k) {
for(int j = 0; j < k; j++) {
C z = a[i + j + k] * rts[j + k];
a[i + j + k] = a[i + j] - z;
a[i + j] = a[i + j] + z;
}
}
}
}
template<typename T>
vector< ll > multiply(vector< T > &a, vector< T > &b) {
int need = (int) a.size() + (int) b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < sz; i++) {
real x = (i < (int) a.size() ? a[i] : 0);
real y = (i < (int) b.size() ? b[i] : 0);
fa[i] = C(x, y);
}
fft(fa, sz);
C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
fa[i] = z;
}
for(int i = 0; i < (sz >> 1); i++) {
C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
fa[i] = A0 + A1 * s;
}
fft(fa, sz >> 1);
vector< ll > ret(need);
for(int i = 0; i < need; i++) {
ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
}
return ret;
}
};
//任意mod畳み込み(Arbitrary-Mod-Convolution)
template< typename T >
struct ArbitraryModConvolution {
using real = FastFourierTransform::real;
using C = FastFourierTransform::C;
ArbitraryModConvolution() = default;
vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
if(need == -1) need = a.size() + b.size() - 1;
int nbase = 0;
while((1 << nbase) < need) nbase++;
FastFourierTransform::ensure_base(nbase);
int sz = 1 << nbase;
vector< C > fa(sz);
for(int i = 0; i < (int)a.size(); i++) {
fa[i] = C(a[i].num & ((1 << 15) - 1), a[i].num >> 15);
}
fft(fa, sz);
vector< C > fb(sz);
if(a == b) {
fb = fa;
} else {
for(int i = 0; i < (int)b.size(); i++) {
fb[i] = C(b[i].num & ((1 << 15) - 1), b[i].num >> 15);
}
fft(fb, sz);
}
real ratio = 0.25 / sz;
C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
for(int i = 0; i <= (sz >> 1); i++) {
int j = (sz - i) & (sz - 1);
C a1 = (fa[i] + fa[j].conj());
C a2 = (fa[i] - fa[j].conj()) * r2;
C b1 = (fb[i] + fb[j].conj()) * r3;
C b2 = (fb[i] - fb[j].conj()) * r4;
if(i != j) {
C c1 = (fa[j] + fa[i].conj());
C c2 = (fa[j] - fa[i].conj()) * r2;
C d1 = (fb[j] + fb[i].conj()) * r3;
C d2 = (fb[j] - fb[i].conj()) * r4;
fa[i] = c1 * d1 + c2 * d2 * r5;
fb[i] = c1 * d2 + c2 * d1;
}
fa[j] = a1 * b1 + a2 * b2 * r5;
fb[j] = a1 * b2 + a2 * b1;
}
fft(fa, sz);
fft(fb, sz);
vector< T > ret(need);
for(int i = 0; i < need; i++) {
ll aa = llround(fa[i].x);
ll bb = llround(fb[i].x);
ll cc = llround(fa[i].y);
aa = ll(T(aa)), bb = ll(T(bb)), cc = ll(T(cc));
ret[i] = T(aa + (bb << 15) + (cc << 30));
}
return ret;
}
};
////
//[lib]高速きたまさ法.cpp
//[depends on]形式的冪級数FPS.cpp
// f に a * x^n + b を掛ける
void mul_simple(FormalPowerSeries<Modint> &f, Modint a, ll n, Modint b){
for(ll i = f.size() - 1 ; i >= 0 ; i--){
f[i] *= b;
if(i >= n) f[i] += f[i - n] * a;
}
}
// f から a * x^n + b を割る
void div_simple(FormalPowerSeries<Modint> &f, Modint a, ll n, Modint b){
for(ll i = 0 ; i < (ll)f.size() ; i++){
f[i] /= b;
if(i + n < (ll)f.size() ) f[n + i] -= f[i] * a;
}
}
// f/g を deg(f)次まで求める
FormalPowerSeries<Modint> div_(FormalPowerSeries<Modint> &f, FormalPowerSeries<Modint> g){
ll n = f.size();
return (f * g.inv(n)).pre(n);
}
// 隣接K+1項漸化式 A[n] = c[1]*A[n-1]+c[2]*A[n-2]+...+c[K]*A[n-K] のa[N]を求める
// N ... 求めたい項a[N] (0-indexed)
// c ... 漸化式の係数c
// a ... 初期解 (a[0] , a[1] , ... , a[K-1])
// x^N を fでわった剰余を求め、aと内積を取る
//計算量:O(KlogKlogN)
Modint kitamasa(ll N, vector<Modint> c, vector<Modint> a){
ArbitraryModConvolution< Modint > fft;
using FPS = FormalPowerSeries< Modint >;
auto mult = [&](const FPS::P& a, const FPS::P& b) { return fft.multiply(a, b); };
FPS::set_mult(mult);
FormalPowerSeries<Modint> Q(c.size()+1);
Q[0]=1;
for(ll i=0; i<(ll)c.size(); i++) Q[i+1]=-c[i];
FormalPowerSeries<Modint> af(a.size());
for(ll i=0; i<(ll)a.size(); i++) af[i]=a[i];
ll k = Q.size() - 1;
assert( (ll)af.size() == k );
FormalPowerSeries<Modint> P = af * Q; P.resize(k);
while(N){
// 初期化
// N & 1のときはQoを、そうでないときはQxを1シフトする
FormalPowerSeries<Modint> Pe( k - k / 2 ) , Po( k / 2 );
FormalPowerSeries<Modint> Qe( (k + 1) - (k + 1) / 2) ;
FormalPowerSeries<Modint> Qo( (k + 1) / 2 + (N & 1) );
FormalPowerSeries<Modint> Qx( (k + 1) / 2 + !(N & 1) );
for(int i = 0 ; i <= k ; i++){
if(i & 1){
if(i != k) Po[i >> 1] = P[i];
Qo[(i >> 1) + (N&1)] = Q[i];
Qx[(i >> 1) +!(N&1)] = (Q[i] ? MOD - ll(Q[i]) : 0);
}else {
if(i != k) Pe[i >> 1] = P[i];
Qe[i >> 1] = Q[i];
}
}
if(N & 1){
P = (Pe * Qx) + (Po * Qe) , Q = (Qe * Qe) +(Qo * Qx);
}else{
P = (Pe * Qe) + (Po * Qx) , Q = (Qe * Qe) + (Qo * Qx);
}
N >>= 1;
}
return P[0];
}
/*-----8<-----library-----8<-----*/
//https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
void solve() {
ll K,N;
cin>>K>>N;
N--;
//漸化式 A[n] = c[1]*A[n-1]+c[2]*A[n-2]+...+c[K]*A[n-K] の係数c
vector<Modint> c(K);
rep(i, K) c[i] = 1;
//初期解 a[0]-a[K-1]
vector<Modint> a(K);
rep(i, K) a[i] = 1;
Modint ans=kitamasa(N, c, a);
cout << ans << endl;
}
signed main() {
solve();
return 0;
}
Submission Info
Submission Time |
|
Task |
T - フィボナッチ |
User |
kyon2326 |
Language |
C++ (GCC 9.2.1) |
Score |
8 |
Code Size |
32828 Byte |
Status |
AC |
Exec Time |
22 ms |
Memory |
4076 KB |
Judge Result
Set Name |
All |
Score / Max Score |
8 / 8 |
Status |
|
Set Name |
Test Cases |
All |
00, 01, 02, 03, 04, 90, 91 |
Case Name |
Status |
Exec Time |
Memory |
00 |
AC |
22 ms |
4044 KB |
01 |
AC |
20 ms |
4052 KB |
02 |
AC |
20 ms |
4004 KB |
03 |
AC |
13 ms |
3948 KB |
04 |
AC |
9 ms |
4076 KB |
90 |
AC |
2 ms |
3964 KB |
91 |
AC |
3 ms |
3808 KB |