Submission #1971517


Source Code Expand

Copy
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;
/*---------------------------------------------------------------------------------------------------
            ∧_∧  
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     
    /   \     | |     
    /   / ̄ ̄ ̄ ̄/  |  
  __(__ニつ/     _/ .| .|____  
     \/____/ (u ⊃  
---------------------------------------------------------------------------------------------------*/

// http://d.hatena.ne.jp/incognita/20110305/1299344781
// todo: 他の実装
// Q(i,j) := 整数iを順序を区別せずに「j個の自然数」の和に分ける場合の数
// R(i,j) := 整数iを順序を区別せずに「j個以下の自然数」の和に分ける場合の数
template<typename T> struct PartitionNumber{
    int n;
    vector<T> _P; vector<vector<T>> _PP, _Q, _R;
    PartitionNumber(int _n) {
        n = _n;
        _P.resize(n + 1);
        _PP.resize(n + 1, vector<T>(n + 1));
        _Q.resize(n + 1, vector<T>(n + 1));
        _R.resize(n + 1, vector<T>(n + 1));

        _Q[0][0] = 1;
        rep(i, 1, n + 1) rep(j, 1, n + 1) {
            _Q[i][j] += _Q[i - 1][j - 1];
            if (j <= i) _Q[i][j] += _Q[i - j][j];
        }
        rep(i, 0, n + 1) {
            _R[i][0] = _Q[i][0];
            rep(j, 1, n + 1) _R[i][j] = _R[i][j - 1] + _Q[i][j];
        }
    }

    mint R(int i, int j) {
        assert(0 <= j and 0 <= i and j <= n and i <= n);
        return _R[i][j];
    }
};
//---------------------------------------------------------------------------------------------------
PartitionNumber<mint> pn(1010);
mint solve(vector<int> &kill, vector<int>& death) {
    deque<pair<int, int>> cnt;
    cnt.push_back({ kill[0], 1 });
    rep(i, 1, kill.size()) {
        if (cnt.back().first == kill[i]) cnt.back().second++;
        else cnt.push_back({ kill[i], 1 });
    }

    int sm = 0;
    fore(i, death) sm += i;
    int n = cnt.size();

    vector<vector<mint>> dp(n + 1, vector<mint>(sm + 1, 0));
    dp[0][0] = 1;
    rep(g, 0, n) rep(s, 0, sm + 1) rep(i, 0, sm - s + 1) dp[g + 1][s + i] += dp[g][s] * pn.R(i, cnt[g].second);

    return dp[n][sm];
}
//---------------------------------------------------------------------------------------------------
void _main() {
    int N, M;
    cin >> N >> M;

    vector<int> A(N), B(M);
    rep(i, 0, N) cin >> A[i];
    rep(i, 0, M) cin >> B[i];

    mint a = solve(A, B);
    mint b = solve(B, A);
    mint ans = a * b;
    cout << ans << endl;
}

Submission Info

Submission Time
Task C - Kill/Death
User hamayanhamayan
Language C++14 (GCC 5.4.1)
Score 500
Code Size 5015 Byte
Status AC
Exec Time 385 ms
Memory 12672 KB

Judge Result

Set Name All
Score / Max Score 500 / 500
Status
AC × 71
Set Name Test Cases
All 01_sample00, 01_sample01, 01_sample02, 01_sample03, 01_sample04, 02_minimal00, 02_minimal01, 02_minimal02, 02_minimal03, 03_maximal00, 03_maximal01, 04_random-easy00, 04_random-easy01, 04_random-easy02, 04_random-easy03, 04_random-easy04, 04_random-easy05, 04_random-easy06, 04_random-easy07, 04_random-easy08, 04_random-easy09, 04_random-easy10, 04_random-easy11, 04_random-easy12, 04_random-easy13, 04_random-easy14, 04_random-easy15, 04_random-easy16, 04_random-easy17, 04_random-easy18, 04_random-easy19, 05_random-large00, 05_random-large01, 05_random-large02, 05_random-large03, 05_random-large04, 05_random-large05, 05_random-large06, 05_random-large07, 05_random-large08, 05_random-large09, 05_random-large10, 05_random-large11, 05_random-large12, 05_random-large13, 05_random-large14, 05_random-large15, 05_random-large16, 05_random-large17, 05_random-large18, 05_random-large19, 06_random00, 06_random01, 06_random02, 06_random03, 06_random04, 06_random05, 06_random06, 06_random07, 06_random08, 06_random09, 06_random10, 06_random11, 06_random12, 06_random13, 06_random14, 06_random15, 06_random16, 06_random17, 06_random18, 06_random19
Case Name Status Exec Time Memory
01_sample00 AC 17 ms 12416 KB
01_sample01 AC 17 ms 12416 KB
01_sample02 AC 17 ms 12416 KB
01_sample03 AC 17 ms 12416 KB
01_sample04 AC 18 ms 12416 KB
02_minimal00 AC 17 ms 12416 KB
02_minimal01 AC 21 ms 12416 KB
02_minimal02 AC 21 ms 12416 KB
02_minimal03 AC 26 ms 12416 KB
03_maximal00 AC 41 ms 12416 KB
03_maximal01 AC 26 ms 12416 KB
04_random-easy00 AC 17 ms 12416 KB
04_random-easy01 AC 17 ms 12416 KB
04_random-easy02 AC 17 ms 12416 KB
04_random-easy03 AC 17 ms 12416 KB
04_random-easy04 AC 17 ms 12416 KB
04_random-easy05 AC 17 ms 12416 KB
04_random-easy06 AC 17 ms 12416 KB
04_random-easy07 AC 17 ms 12416 KB
04_random-easy08 AC 17 ms 12416 KB
04_random-easy09 AC 17 ms 12416 KB
04_random-easy10 AC 17 ms 12416 KB
04_random-easy11 AC 17 ms 12416 KB
04_random-easy12 AC 17 ms 12416 KB
04_random-easy13 AC 17 ms 12416 KB
04_random-easy14 AC 17 ms 12416 KB
04_random-easy15 AC 17 ms 12416 KB
04_random-easy16 AC 17 ms 12416 KB
04_random-easy17 AC 17 ms 12416 KB
04_random-easy18 AC 17 ms 12416 KB
04_random-easy19 AC 17 ms 12416 KB
05_random-large00 AC 327 ms 12544 KB
05_random-large01 AC 385 ms 12544 KB
05_random-large02 AC 357 ms 12544 KB
05_random-large03 AC 341 ms 12544 KB
05_random-large04 AC 330 ms 12544 KB
05_random-large05 AC 369 ms 12544 KB
05_random-large06 AC 350 ms 12672 KB
05_random-large07 AC 348 ms 12544 KB
05_random-large08 AC 330 ms 12544 KB
05_random-large09 AC 336 ms 12544 KB
05_random-large10 AC 337 ms 12544 KB
05_random-large11 AC 334 ms 12544 KB
05_random-large12 AC 369 ms 12544 KB
05_random-large13 AC 354 ms 12544 KB
05_random-large14 AC 347 ms 12544 KB
05_random-large15 AC 314 ms 12544 KB
05_random-large16 AC 357 ms 12544 KB
05_random-large17 AC 361 ms 12544 KB
05_random-large18 AC 362 ms 12544 KB
05_random-large19 AC 344 ms 12544 KB
06_random00 AC 131 ms 12416 KB
06_random01 AC 18 ms 12416 KB
06_random02 AC 23 ms 12416 KB
06_random03 AC 151 ms 12416 KB
06_random04 AC 76 ms 12416 KB
06_random05 AC 65 ms 12416 KB
06_random06 AC 26 ms 12416 KB
06_random07 AC 74 ms 12416 KB
06_random08 AC 30 ms 12416 KB
06_random09 AC 148 ms 12416 KB
06_random10 AC 23 ms 12416 KB
06_random11 AC 61 ms 12416 KB
06_random12 AC 151 ms 12416 KB
06_random13 AC 33 ms 12416 KB
06_random14 AC 55 ms 12416 KB
06_random15 AC 17 ms 12416 KB
06_random16 AC 100 ms 12416 KB
06_random17 AC 56 ms 12416 KB
06_random18 AC 40 ms 12416 KB
06_random19 AC 36 ms 12416 KB