Contest Duration: ~ (local time) (180 minutes)

Submission #994017

Source Code Expand

Copy
```#include <vector>
#include <iostream>
#include <utility>
#include <algorithm>
#include <string>
#include <deque>
#include <tuple>
#include <queue>
#include <functional>
#include <cmath>
#include <iomanip>
#include <map>
#include <numeric>
#include <unordered_map>
#include <unordered_set>
#include <complex>
#include <iterator>
#include <array>
#include <chrono>
//cin.sync_with_stdio(false);
//streambuf
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
using vi = vector<int>;
using vll = vector<ll>;
using vpii = vector<pii>;
template<class T, int s>using va = vector<array<T, s>>;
template<class T, class T2> using umap = unordered_map<T, T2>;
template<class T> using uset = unordered_set<T>;
template<class T, class S> void cmin(T &a, const S&&b) { if (a > b)a = b; }
template<class T, class S> void cmax(T &a, const S&&b) { if (a < b)a = b; }
#define ALL(a) a.begin(),a.end()
#define rep(i,a) for(int i=0;i<a;i++)
#define rep1(i,a) for(int i=1;i<=a;i++)
#define rrep(i,a) for(int i=a-1;i>=0;i--)
#define rrep1(i,a) for(int i=a;i;i--)
const ll mod = 1000000007;
#ifndef INT_MAX
const int INT_MAX = numeric_limits<signed>().max();
#endif
template<class T>using heap = priority_queue<T, vector<T>, greater<T>>;
template<class T>using pque = priority_queue<T, vector<T>, function<T(T, T)>>;
template <class T>
inline void hash_combine(size_t & seed, const T & v) {
hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
namespace std {

template<typename S, typename T> struct hash<pair<S, T>> {
inline size_t operator()(const pair<S, T> & v) const {
size_t seed = 0;
hash_combine(seed, v.first);
hash_combine(seed, v.second);
return seed;
}
};
// Recursive template code derived from Matthieu M.
template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
struct HashValueImpl
{
static void apply(size_t& seed, Tuple const& tuple)
{
HashValueImpl<Tuple, Index - 1>::apply(seed, tuple);
hash_combine(seed, std::get<Index>(tuple));
}
};

template <class Tuple>
struct HashValueImpl<Tuple, 0>
{
static void apply(size_t& seed, Tuple const& tuple)
{
hash_combine(seed, std::get<0>(tuple));
}
};

template <typename ... TT>
struct hash<std::tuple<TT...>>
{
size_t
operator()(std::tuple<TT...> const& tt) const
{
size_t seed = 0;
HashValueImpl<std::tuple<TT...> >::apply(seed, tt);
return seed;
}

};
}
ll pow(ll base, ll i, ll mod) {
ll a = 1;
while (i) {
if (i & 1) {
a *= base;
a %= mod;
}
base *= base;
base %= mod;
i /= 2;
}
return a;
}
class unionfind {
vector<int> par, rank, size_;//速度ではなくメモリ効率を考えるならrankのかわりにsizeを使う
public:
unionfind(int n) :par(n), rank(n), size_(n, 1) {
iota(ALL(par), 0);
}
int find(int x) {
if (par[x] == x)return x;
return par[x] = find(par[x]);
}
void unite(int x, int y) {
x = find(x), y = find(y);
if (x == y)return;
if (rank[x] < rank[y])swap(x, y);
par[y] = x;
size_[x] += size_[y];
if (rank[x] == rank[y])rank[x]++;
}
bool same(int x, int y) {
return find(x) == find(y);
}
int size(int x) {
return size_[find(x)];
}
};
ll gcd(ll a, ll b) {
while (b) {
ll c = a%b;
a = b;
b = c;
}
return a;
}
ll lcm(ll a, ll b) {
return a / gcd(a, b)*b;
}
int popcnt(unsigned long long a) {
a = (a & 0x5555555555555555) + (a >> 1 & 0x5555555555555555);
a = (a & 0x3333333333333333) + (a >> 2 & 0x3333333333333333);
a = (a & 0x0f0f0f0f0f0f0f0f) + (a >> 4 & 0x0f0f0f0f0f0f0f0f);
a = (a & 0x00ff00ff00ff00ff) + (a >> 8 & 0x00ff00ff00ff00ff);
a = (a & 0x0000ffff0000ffff) + (a >> 16 & 0x0000ffff0000ffff);
return (a & 0xffffffff) + (a >> 32);
}
template<class T, class Func = function<T(T, T)>>
class segtree {
vector<T> obj;
int offset;
Func updater;
T e;
int bufsize(int num) {
int i = 1;
for (; num >i; i <<= 1);
offset = i - 1;
return (i << 1) - 1;
}
T query(int a, int b, int k, int l, int r) {
if (r <= a || b <= l)return e;
if (a <= l && r <= b)return obj[k];
else return updater(query(a, b, k * 2 + 1, l, (l + r) / 2), query(a, b, k * 2 + 2, (l + r) / 2, r));
}
public:
T query(int a, int b) {//[a,b)
return query(a, b, 0, 0, offset + 1);
}
void updateall(int l = 0, int r = -1) {
if (r < 0)r = offset + 1;
l += offset, r += offset;
do {
l = l - 1 >> 1, r = r - 1 >> 1;
for (int i = l; i < r; i++)obj[i] = updater(obj[i * 2 + 1], obj[i * 2 + 2]);
} while (l);
}
void update(int k, T &a) {
k += offset;
obj[k] = a;
while (k) {
k = k - 1 >> 1;
obj[k] = updater(obj[k * 2 + 1], obj[k * 2 + 2]);
}
}
segtree(int n, T e, const Func &updater_ = Func()) :obj(bufsize(n), e), e(e), updater(updater_) {}
segtree(vector<T> &vec, T e, const Func &updater = Func()) :obj(bufsize(vec.size()), e), e(e), updater(updater) {
copy(vec.begin(), vec.end(), obj.begin() + offset);
updateall();
}
typename vector<T>::reference operator[](int n) {
return obj[n + offset];
}
};
template<class T>
class matrix {
vector<vector<T>> obj;
pair<int, int> s;
public:
matrix(pair<int, int> size, T e = 0) :matrix(size.first, size.second, e) {}
matrix(int n, int m = -1, T e = 0) :obj(n, vector<T>(m == -1 ? n : m, e)), s(n, m == -1 ? n : m) {}
static matrix e(int n) {
matrix a = (n);
for (int i = 0; i < n; i++)a[i][i] = 1;
return a;
}
matrix& operator+=(const matrix &p) {
if (s != p.s)throw runtime_error("matrix error");
for (int i = 0; i < s.first; i++)
for (int j = 0; j < s.second; j++)obj[i][j] += p.obj[i][j];
return *this;
}
matrix operator+(const matrix &p) {
matrix res(*this);
return res += p;
}
matrix& operator-=(const matrix &p) {
if (s != p.s)throw runtime_error("matrix error");
for (int i = 0; i < s.first; i++)
for (int j = 0; j < s.second; j++)obj[i][j] -= p.obj[i][j];
return *this;
}
matrix operator-(const matrix &p) {
matrix res(*this);
return res -= p;
}
matrix& operator*=(T p) {
for (auto &a : obj)
for (auto &b : a)b *= p;
return *this;
}
matrix operator*(T p) {
matrix res(*this);
return res *= p;
}
matrix operator*(const matrix &p) {
if (s.second != p.s.first)throw runtime_error("matrix error");
matrix ret(s.first, p.s.second);
for (int i = 0; i < s.first; i++)
for (int j = 0; j < s.second; j++)
for (int k = 0; k < p.s.second; k++)ret[i][k] += obj[i][j] * p.obj[j][k];
return ret;
}
matrix &operator*=(const matrix &p) {
return *this = *this*p;
}
pair<int, int> size() const {
return s;
}
matrix &mod(T m) {
for (auto &a : obj)
for (auto &b : a)b %= m;
return *this;
}
typename vector<vector<T>>::reference operator[](int t) {
return obj[t];
}
};
template<class T> inline
matrix<T> pow(matrix<T> &base, unsigned exp) {
auto base_(base);
if (base_.size().first != base_.size().second)throw runtime_error("matrix error");
matrix<T> res = matrix<T>::e(base_.size().first);
for (;;) {
if (exp & 1)res *= base_;
if (!(exp /= 2))break;
base_ *= base_;
}
return res;
}
template<class T> inline
matrix<T> modpow(matrix<T> &base, unsigned exp, T m) {
auto base_(base);
if (base.size().first != base_.size().second)throw runtime_error("matrix error");
matrix<T> res = matrix<T>::e(base_.size().first);
for (;;) {
if (exp & 1)(res *= base_).mod(m);
if (!(exp /= 2))break;
(base_ *= base_).mod(m);
}
return res;
}
template<class T>int id(vector<T> &a, T b) {
return lower_bound(ALL(a), b) - a.begin();
}
class Flow {
int V;
struct edge { int to, cap, rev, cost; };
vector<vector<edge>> G;
vector<int> level, iter, h, dist, prevv, preve;
public:
Flow(int size) :G(size + 1), V(size + 1) {
}
void add_edge(int from, int to, int cap, int cost = 0) {
G[from].push_back(edge{ to, cap, (int)G[to].size(),cost });
G[to].push_back(edge{ from,0,(int)G[from].size() - 1,-cost });
}
void bfs(int s) {
fill(level.begin(), level.end(), -1);
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty()) {
int v = que.front(); que.pop();
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int dfs(int v, int t, int f) {
if (v == t)return f;
for (int &i = iter[v]; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && level[v] < level[e.to]) {
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
level.resize(V);
iter.resize(V);
int flow = 0;
for (;;) {
bfs(s);
if (level[t] < 0)return flow;
fill(iter.begin(), iter.end(), 0);
int f;
while ((f = dfs(s, t, numeric_limits<int>::max()))>0) {
flow += f;
}
}
}
typedef pair<int, int> P;
int min_cost_flow(int s, int t, int f) {
int res = 0;
h.resize(V);
dist.resize(V);
prevv.resize(V);
preve.resize(V);
fill(h.begin(), h.end(), 0);
while (f > 0) {
priority_queue<P, vector<P>, greater<P>> que;
fill(dist.begin(), dist.end(), numeric_limits<int>::max());
dist[s] = 0;
que.push({ 0,s });
while (!que.empty()) {
P p = que.top(); que.pop();
int v = p.second;
if (dist[v] < p.first)continue;
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to]>dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push({ dist[e.to],e.to });
}
}
}
if (dist[t] == numeric_limits<int>::max()) {
return -1;
}
for (int v = 0; v < V; v++)h[v] += dist[v];

int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
};
const ld eps = 1e-11, pi = acos(-1.0);
typedef complex<ld> P;
typedef vector<P> VP;
ld dot(P a, P b) { return real(conj(a) * b); }
ld cross(P a, P b) { return imag(conj(a) * b); }

namespace std {
bool operator<(const P &a, const P &b) {
return abs(a.real() - b.real()) < eps ? a.imag() < b.imag() : a.real() < b.real();
}
}

struct L { P a, b; };//line->l,segment->s
struct C { P p; ld r; };

int ccw(P a, P b, P c) {
b -= a; c -= a;
if (cross(b, c) > eps) return 1;   // counter clockwise
if (cross(b, c) < -eps) return -1; // clockwise
if (dot(b, c) < 0) return 2;       // c--a--b on line
if (norm(b) < norm(c)) return -2;  // a--b--c on line
return 0;                          // a--c--b on line
}

bool isis_ll(L l, L m) {//is intersect
return abs(cross(l.b - l.a, m.b - m.a)) > eps;
}

bool isis_ls(L l, L s) {
ld a = cross(l.b - l.a, s.a - l.a);
ld b = cross(l.b - l.a, s.b - l.a);
return (a * b < eps);
}

bool isis_lp(L l, P p) {
return abs(cross(l.b - p, l.a - p)) < eps;
}

bool isis_ss(L s, L t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}

P is_ll(L s, L t) { //intersect
P sv = s.b - s.a, tv = t.b - t.a;
return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}

bool isis_sp(L s, P p) {
return abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps;
}

P proj(L l, P p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}

ld dist_lp(L l, P p) {
return abs(p - proj(l, p));
}

ld dist_ll(L l, L m) {
return isis_ll(l, m) ? 0 : dist_lp(l, m.a);
}

ld dist_ls(L l, L s) {
if (isis_ls(l, s)) return 0;
return min(dist_lp(l, s.a), dist_lp(l, s.b));
}

ld dist_sp(L s, P p) {
P r = proj(s, p);
if (isis_sp(s, r)) return abs(r - p);
return min(abs(s.a - p), abs(s.b - p));
}

ld dist_ss(L s, L t) {
if (isis_ss(s, t)) return 0;
ld a = min(dist_sp(s, t.a), dist_sp(t, s.a));
ld b = min(dist_sp(s, t.b), dist_sp(t, s.b));
return min(a, b);
}

VP is_cc(C c1, C c2) {
VP res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps) dfr = 0.0;
else if (dfr < 0.0) return res; // no intersection
ld rs = sqrt(dfr);
P diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * P(rc, rs));
if (dfr != 0.0) res.push_back(c1.p + diff * P(rc, -rs));
return res;
}

bool isis_vc(vector<C> vc) {
VP crs;
int n = vc.size();
rep(i, n)rep(j, i)
for (P p : is_cc(vc[i], vc[j]))
crs.push_back(p);
rep(i, n)
crs.push_back(vc[i].p);
for (P p : crs) {
bool valid = true;
rep(i, n)
if (abs(p - vc[i].p)>vc[i].r + eps)
valid = false;
if (valid) return true;
}
return false;
}

VP is_lc(C c, L l) {
VP res;
ld d = dist_lp(l, c.p);
if (d < c.r + eps) {
ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;
P nor = (l.a - l.b) / abs(l.a - l.b);
res.push_back(proj(l, c.p) + len * nor);
res.push_back(proj(l, c.p) - len * nor);
}
return res;
}

VP is_sc(C c, L l) {
VP v = is_lc(c, l), res;
for (P p : v)
if (isis_sp(l, p)) res.push_back(p);
return res;
}

vector<L> tangent_cp(C c, P p) {//円の接線?
vector<L> ret;
P v = c.p - p;
ld d = abs(v);
ld l = sqrt(norm(v) - c.r * c.r);
if (isnan(l)) { return ret; }
P v1 = v * P(l / d, c.r / d);
P v2 = v * P(l / d, -c.r / d);
ret.push_back(L{ p, p + v1 });
if (l < eps) return ret;
ret.push_back(L{ p, p + v2 });
return ret;
}

vector<L> tangent_cc(C c1, C c2) {
vector<L> ret;
if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
P center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
ret = tangent_cp(c1, center);
}
if (abs(c1.r - c2.r) > eps) {
P out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
vector<L> nret = tangent_cp(c1, out);
ret.insert(ret.end(), ALL(nret));
}
else {
P v = c2.p - c1.p;
v /= abs(v);
P q1 = c1.p + v * P(0, 1) * c1.r;
P q2 = c1.p + v * P(0, -1) * c1.r;
ret.push_back(L{ q1, q1 + v });
ret.push_back(L{ q2, q2 + v });
}
return ret;
}

ld area(const VP &p) {//面積??
ld res = 0;
int n = p.size();
rep(j, n) res += cross(p[j], p[(j + 1) % n]);
return res / 2;
}

bool is_polygon(L l, VP &g) {
int n = g.size();
for (int i = 0; i < n; i++) {
P a = g[i];
P b = g[(i + 1) % n];
if (isis_ss(l, L{ a, b })) return true;
}
return false;
}

int is_in_Polygon(const VP &g, P p) {
bool in = false;
int n = g.size();
for (int i = 0; i < n; i++) {
P a = g[i] - p, b = g[(i + 1) % n] - p;
if (imag(a) > imag(b)) swap(a, b);
if (imag(a) <= 0 && 0 < imag(b))
if (cross(a, b) < 0) in = !in;
if (abs(cross(a, b)) < eps && dot(a, b) < eps) return 0; // on
}
if (in) return 1; // in
return -1; // out
}

VP ConvexHull(VP ps) {
int n = ps.size();
int k = 0;
sort(ps.begin(), ps.end());
VP ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++])
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
ch.resize(k - 1);
return ch;
}

VP ConvexCut(const VP &ps, L l) {
VP Q;
for (int i = 0; i < (int)ps.size(); i++) {
P A = ps[i], B = ps[(i + 1) % ps.size()];
if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0)
Q.push_back(is_ll(L{ A, B }, l));
}
return Q;
}
double dist2(P a) {
return real(a)*real(a) + imag(a)*imag(a);
}
// Suffix Array	初期化O(|S|log^2|S|), 検索O(|T|log|S|), 高さ配列構築O(|S|)
class StringSearch {
const int n;
string S;
public:
vector<int> sa, rank;
StringSearch(const string &S_) :n(S_.size()), S(S_), sa(n + 1), rank(n + 1) {
for (int i = 0; i <= n; i++) {
sa[i] = i;
rank[i] = i < n ? S[i] : -1;
}
vector<int> tmp(n + 1);
for (int k = 1; k <= n; k *= 2) {
auto Compare_SA = [=](int i, int j) {
if (this->rank[i] != this->rank[j]) return this->rank[i] < this->rank[j];

int ri = i + k <= n ? this->rank[i + k] : -1;
int rj = j + k <= n ? this->rank[j + k] : -1;
return ri < rj;
};
sort(sa.begin(), sa.end(), Compare_SA);
tmp[sa[0]] = 0;
for (int i = 1; i <= n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (Compare_SA(sa[i - 1], sa[i]) ? 1 : 0);
}
for (int i = 0; i <= n; i++) {
this->rank[i] = tmp[i];
}
}
}
bool Contain(const string &T) {
int a = 0, b = n;
while (b - a > 1) {
int c = (a + b) / 2;
if (S.compare(sa[c], T.length(), T) < 0) a = c;
else b = c;
}
return S.compare(sa[b], T.length(), T) == 0;
}
vector<int> LCPArray() {
for (int i = 0; i <= n; i++) rank[sa[i]] = i;
int h = 0;
vector<int> lcp(n + 1);
for (int i = 0; i < n; i++) {
int j = sa[rank[i] - 1];
if (h > 0) h--;
for (; j + h < n && i + h < n; h++) {
if (S[j + h] != S[i + h]) break;
}
lcp[rank[i] - 1] = h;
}
return lcp;
}
};
int main() {
int n, m;
cin >> n >> m;
vector<array<vpii,2>> a(m, {vpii(),vpii()});
vi x(n+1);
rep(i, n)cin >> x[i];
x[n] = 1e9;
sort(ALL(x));
int prev = 0;
rep(i, n) {
int j = 1;
while (x[i] == x[i + j])j++;
a[x[i] % m][j & 1].push_back({ x[i],j });
i += j - 1;
}
int ans = 0;
if (m % 2 == 0) {
int a0 = 0;
for (auto b : a[0][0])a0 += b.second;
for (auto b : a[0][1])a0 += b.second;
a[m/2][0] = { pii{ 0,a0 } };
a[m / 2][1].clear();
}
bool f = 1;
while (f) {
f = 0;
rep1(i, m - 1) {
while (!a[i][1].empty()) {
if (!a[m - i][1].empty()) {
//cout << a[i][1].back().first << " " << a[m - i][1].back().first << endl;
a[i][0].push_back(a[i][1].back());
a[i][0].back().second--;
a[i][1].pop_back();
if (a[i][0].back().second == 0)a[i][0].pop_back();
a[m - i][0].push_back(a[m - i][1].back());
a[m - i][0].back().second--;
a[m - i][1].pop_back();
if (a[m - i][0].back().second == 0)a[m - i][0].pop_back();
ans++;
}
else if (!a[m - i][0].empty()) {
a[i][0].push_back(a[i][1].back());
a[i][0].back().second--;
a[i][1].pop_back();
if (a[i][0].back().second == 0)a[i][0].pop_back();
a[m - i][0].back().second--;
if (a[m - i][0].back().second == 0)a[m - i][0].pop_back();
else {
a[m - i][1].push_back(a[m - i][0].back());
a[m - i][0].pop_back();
}
ans++;
f = 1;
}
else break;
}
}
}
int a0 = 0;
for (auto b : a[0][0])a0 += b.second;
for (auto b : a[0][1])a0 += b.second;
a[0][0] = { pii{ 0,a0 } };
a[0][1].clear();
rep(i, m)for (auto b : a[i][0])ans += b.second / 2;
rep(i, m)for (auto b : a[i][1])ans += b.second / 2;
cout << ans << endl;
}```

#### Submission Info

Submission Time 2016-11-26 14:30:17+0900 D - Pair Cards nakano C++14 (GCC 5.4.1) 0 19283 Byte WA 56 ms 11520 KB

#### Judge Result

Set Name sample all
Score / Max Score 0 / 0 0 / 700
Status
 AC × 2
 AC × 24 WA × 8
Set Name Test Cases
sample sample-01.txt, sample-02.txt
all sample-01.txt, sample-02.txt, 01-01.txt, 01-02.txt, 01-03.txt, 01-04.txt, 01-05.txt, 01-06.txt, 01-07.txt, 01-08.txt, 01-09.txt, 01-10.txt, 01-11.txt, 01-12.txt, 01-13.txt, 01-14.txt, 01-15.txt, 01-16.txt, 01-17.txt, 01-18.txt, 01-19.txt, 01-20.txt, 01-21.txt, 01-22.txt, 01-23.txt, 01-24.txt, 01-25.txt, 01-26.txt, 01-27.txt, 01-28.txt, 01-29.txt, 01-30.txt
Case Name Status Exec Time Memory
01-01.txt 2 ms 256 KB
01-02.txt 37 ms 1404 KB
01-03.txt 39 ms 1280 KB
01-04.txt 38 ms 1408 KB
01-05.txt 38 ms 1408 KB
01-06.txt 38 ms 1408 KB
01-07.txt 38 ms 1408 KB
01-08.txt 39 ms 1536 KB
01-09.txt 40 ms 1664 KB
01-10.txt 47 ms 4736 KB
01-11.txt 53 ms 8448 KB
01-12.txt 32 ms 640 KB
01-13.txt 34 ms 2688 KB
01-14.txt 38 ms 1660 KB
01-15.txt 38 ms 1608 KB
01-16.txt 39 ms 1920 KB
01-17.txt 39 ms 1664 KB
01-18.txt 41 ms 2432 KB
01-19.txt 43 ms 2688 KB
01-20.txt 56 ms 11520 KB
01-21.txt 35 ms 640 KB
01-22.txt 35 ms 768 KB
01-23.txt 35 ms 768 KB
01-24.txt 36 ms 768 KB
01-25.txt 39 ms 2176 KB
01-26.txt 47 ms 5504 KB
01-27.txt 29 ms 6656 KB
01-28.txt 10 ms 4992 KB
01-29.txt 5 ms 2048 KB
01-30.txt 8 ms 4992 KB
sample-01.txt 2 ms 256 KB
sample-02.txt 2 ms 256 KB