Submission #19437808
Source Code Expand
Copy
#pragma region Macros
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#define ll long long
#define ld long double
#define rep2(i, a, b) for(ll i = a; i <= b; ++i)
#define rep(i, n) for(ll i = 0; i < n; ++i)
#define rep3(i, a, b) for(ll i = a; i >= b; --i)
#define pii pair<int, int>
#define pll pair<ll, ll>
#define pb push_back
#define eb emplace_back
#define vi vector<int>
#define vll vector<ll>
#define vpi vector<pii>
#define vpll vector<pll>
#define overload2(_1, _2, name, ...) name
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
IN(name)
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
IN(name)
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
#define mt make_tuple
#define fi first
#define se second
#define all(c) begin(c), end(c)
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
using namespace std;
constexpr pii dx4[4] = {pii{1, 0}, pii{0, 1}, pii{-1, 0}, pii{0, -1}};
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
const string YESNO[2] = {"NO", "YES"};
const string YesNo[2] = {"No", "Yes"};
const string yesno[2] = {"no", "yes"};
void YES(bool t = 1) { cout << YESNO[t] << endl; }
void Yes(bool t = 1) { cout << YesNo[t] << endl; }
void yes(bool t = 1) { cout << yesno[t] << endl; }
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
#define si(c) (int)(c).size()
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
IN(__VA_ARGS__)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &... tail) {
scan(head);
IN(tail...);
}
template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); }
template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); }
vi iota(int n) {
vi a(n);
iota(all(a), 0);
return a;
}
template <typename T> vi iota(vector<T> &a, bool greater = false) {
vi res(a.size());
iota(all(res), 0);
sort(all(res), [&](int i, int j) {
if(greater) return a[i] > a[j];
return a[i] < a[j];
});
return res;
}
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())
template <class T> T POW(T x, int n) {
T res = 1;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
vector<pll> factor(ll x) {
vector<pll> ans;
for(ll i = 2; i * i <= x; i++)
if(x % i == 0) {
ans.push_back({i, 1});
while((x /= i) % i == 0) ans.back().second++;
}
if(x != 1) ans.push_back({x, 1});
return ans;
}
template <class T> vector<T> divisor(T x) {
vector<T> ans;
for(T i = 1; i * i <= x; i++)
if(x % i == 0) {
ans.pb(i);
if(i * i != x) ans.pb(x / i);
}
return ans;
}
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
sort(all(y));
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
ll allbit(ll n) { return (1LL << n) - 1; }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(ll t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi - y.fi, x.se - y.se); }
template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.fi + y.fi, x.se + y.se); }
template <class T> ll operator*(const pair<T, T> &x, const pair<T, T> &y) { return (ll)x.fi * y.fi + (ll)x.se * y.se; }
template <typename T> struct edge {
int from, to;
T cost;
int id;
edge(int to, T cost) : from(-1), to(to), cost(cost) {}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T> using Edges = vector<edge<T>>;
using Tree = vector<vector<int>>;
using Graph = vector<vector<int>>;
template <class T> using Wgraph = vector<vector<edge<T>>>;
Graph getG(int n, int m = -1, bool directed = false, int margin = 1) {
Tree res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
cin >> a >> b;
a -= margin, b -= margin;
res[a].emplace_back(b);
if(!directed) res[b].emplace_back(a);
}
return move(res);
}
template <class T> Wgraph<T> getWg(int n, int m = -1, bool directed = false, int margin = 1) {
Wgraph<T> res(n);
if(m == -1) m = n - 1;
while(m--) {
int a, b;
T c;
cin >> a >> b >> c;
a -= margin, b -= margin;
res[a].emplace_back(b, c);
if(!directed) res[b].emplace_back(a, c);
}
return move(res);
}
#define i128 __int128_t
#define ull unsigned long long int
#define TEST \
INT(testcases); \
while(testcases--)
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
for(auto it = begin(v); it != end(v); ++it) {
if(it == begin(v))
os << *it;
else
os << " " << *it;
}
return os;
}
template <class T, class S> ostream &operator<<(ostream &os, const pair<T, S> &p) {
os << p.first << " " << p.second;
return os;
}
template <class S, class T> string to_string(pair<S, T> p) { return "(" + to_string(p.first) + "," + to_string(p.second) + ")"; }
template <class A> string to_string(A v) {
if(v.empty()) return "{}";
string ret = "{";
for(auto &x : v) ret += to_string(x) + ",";
ret.back() = '}';
return ret;
}
string to_string(string s) { return "\"" + s + "\""; }
void dump() { cerr << endl; }
template <class Head, class... Tail> void dump(Head head, Tail... tail) {
cerr << to_string(head) << " ";
dump(tail...);
}
#define endl '\n'
#ifdef _LOCAL
#undef endl
#define debug(x) \
cout << #x << ": "; \
dump(x)
#else
#define debug(x)
#endif
template <typename T> static constexpr T inf = numeric_limits<T>::max() / 2;
struct Setup_io {
Setup_io() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cout << fixed << setprecision(15);
}
} setup_io;
#define drop(s) cout << #s << endl, exit(0)
#pragma endregion
namespace modular {
constexpr ll MOD = 998244353;
const int MAXN = 1100000;
template <ll Modulus> class modint {
using u64 = ll;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint &rhs) const noexcept { return modint(*this) += rhs; }
constexpr modint operator-(const modint &rhs) const noexcept { return modint(*this) -= rhs; }
constexpr modint operator*(const modint &rhs) const noexcept { return modint(*this) *= rhs; }
template <typename T> constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; }
constexpr modint operator-() const noexcept { return modint() - *this; }
constexpr modint &operator+=(const modint &rhs) noexcept {
a += rhs.a;
if(a >= Modulus) { a -= Modulus; }
return *this;
}
constexpr modint &operator-=(const modint &rhs) noexcept {
if(a < rhs.a) { a += Modulus; }
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint &rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr bool operator==(const modint &rhs) const noexcept { return a == rhs.a; }
template <typename T> constexpr modint &operator^=(T n) noexcept {
modint<Modulus> res = 1;
modint<Modulus> x = a;
while(n) {
if(n & 1) res *= x;
x *= x;
n >>= 1;
}
a = res.a;
return *this;
}
constexpr bool operator<(const modint &rhs) noexcept { return a < rhs.a; }
constexpr bool operator<=(const modint &rhs) noexcept { return a < rhs.a; }
constexpr bool operator>(const modint &rhs) noexcept { return a > rhs.a; }
constexpr bool operator>=(const modint &rhs) noexcept { return a >= rhs.a; }
};
#define mint modint<MOD>
#define vmint vector<mint>
vmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1};
mint inv(int n) {
if(n > MAXN) return mint(n) ^ (MOD - 2);
if(Inv.size() > n)
return Inv[n];
else {
for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i));
return Inv[n];
}
}
mint inv(mint x) { return inv(x.a); }
mint prd(int n) {
if(Prd.size() > n)
return Prd[n];
else
for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i);
return Prd[n];
}
mint invprd(int n) {
if(Invprd.size() > n)
return Invprd[n];
else
for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i));
return Invprd[n];
}
mint modpow(ll a, ll n) {
mint x = a;
return x ^= n;
}
mint operator/(mint l, mint r) { return l * inv(r); }
mint &operator/=(mint &l, mint r) { return l = l / r; }
mint C(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
return prd(a) * invprd(b) * invprd(a - b);
}
mint P(int a, int b) {
if(a < 0 || b < 0) return 0;
if(a < b) return 0;
return prd(a) * invprd(a - b);
}
ostream &operator<<(ostream &os, mint a) {
os << a.a;
return os;
}
template <typename T> ostream &operator<<(ostream &os, const vmint &a) {
for(auto &e : a) os << e << " ";
return os;
}
mint operator*(ll x, mint y) { return y * x; }
istream &operator>>(istream &is, mint &a) {
ll x;
is >> x;
a = x;
return is;
}
mint proot = 3;
void FMT(vmint &f, const bool is_inv = false) {
const int n = f.size();
const mint root = is_inv ? inv(proot) : proot;
vmint g(n);
for(int b = n >> 1; b > 0; b >>= 1) {
mint a = root ^ ((MOD - 1) / (n / b)), p = 1;
for(int i = 0; i < n; i += b << 1) {
rep(j, b) {
f[i + j + b] *= p;
g[(i >> 1) + j] = f[i + j] + f[i + b + j];
g[(n >> 1) + (i >> 1) + j] = f[i + j] - f[i + b + j];
}
p *= a;
}
swap(f, g);
}
if(is_inv) rep(i, n) f[i] *= inv(n);
}
vmint mul(vmint x, const vmint &y) {
int n = x.size() + y.size() - 1;
int s = 1;
while(s < n) s <<= 1;
x.resize(s);
FMT(x);
vmint z(s);
rep(i, y.size()) z[i] = y[i];
FMT(z);
rep(i, s) x[i] *= z[i];
FMT(x, true);
x.resize(n);
return x;
}
using Poly = vmint;
Poly operator-(Poly f) {
for(auto &&e : f) e = -e;
return f;
}
Poly &operator+=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] += r[i];
return l;
}
Poly operator+(Poly l, const Poly &r) { return l += r; }
Poly &operator-=(Poly &l, const Poly &r) {
l.resize(max(l.size(), r.size()));
rep(i, r.size()) l[i] -= r[i];
return l;
}
Poly operator-(Poly l, const Poly &r) { return l -= r; }
Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; }
Poly operator<<(Poly f, size_t n) { return f <<= n; }
Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; }
Poly operator>>(Poly f, size_t n) { return f >>= n; }
Poly operator*(const Poly &l, const Poly &r) { return mul(l, r); }
Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; }
Poly inv(const Poly &f) {
Poly g{1 / f[0]};
while(g.size() < f.size()) {
Poly x(f.begin(), f.begin() + min(f.size(), g.size() << 1)), y = g;
x.resize(g.size() << 1), FMT(x);
y.resize(g.size() << 1), FMT(y);
rep(i, x.size()) x[i] *= y[i];
FMT(x, true);
x >>= g.size();
x.resize(g.size() << 1), FMT(x);
rep(i, x.size()) x[i] *= -y[i];
FMT(x, true);
g.insert(g.end(), x.begin(), x.begin() + g.size());
}
return Poly{begin(g), begin(g) + f.size()};
}
Poly integ(const Poly &f) {
Poly res(f.size() + 1);
for(int i = 1; i < (int)res.size(); ++i) res[i] = f[i - 1] / i;
return res;
}
Poly deriv(const Poly &f) {
if(f.size() == 0) return Poly();
Poly res(f.size() - 1);
rep(i, res.size()) res[i] = f[i + 1] * (i + 1);
return res;
}
Poly log(const Poly &f) {
Poly g = integ(inv(f) * deriv(f));
return Poly{g.begin(), g.begin() + f.size()};
}
Poly exp(const Poly &f) {
Poly g{1};
while(g.size() < f.size()) {
Poly x(f.begin(), f.begin() + min(f.size(), g.size() * 2));
x[0] += 1;
g.resize(2 * g.size());
x -= log(g);
x *= {g.begin(), g.begin() + g.size() / 2};
rep2(i, g.size() / 2, min<int>(x.size(), g.size()) - 1) g[i] = x[i];
}
return {g.begin(), g.begin() + f.size()};
}
} // namespace modular
using namespace modular;
int main() {
INT(n, m);
map<pii, int> mp;
vi a(m), b(m), c(m);
vv(mint, v, n, 2);
rep(i, n) v[i][0] = v[i][1] = modpow(2, min(i, n - 1 - i));
rep(i, m) {
cin >> a[i] >> b[i] >> c[i];
a[i]--, b[i]--;
mp[pii(a[i], b[i])] = c[i];
}
mint ans = modpow(2, (ll)n * n / 2 / 2 - (n - 1));
rep(i, m) {
if(abs(a[i] - b[i]) <= 1) continue;
if(mp.count(pii(b[i], a[i]))) {
int t = c[i], s = mp[pii(b[i], a[i])];
if((a[i] + b[i]) & 1) {
if(t != s)
drop(0);
else if(a[i] < b[i])
ans /= 2;
} else {
if(a[i] < b[i]) {
int p = (a[i] + b[i]) / 2;
if(t != s)
v[p][1] /= 2, v[p][0] = 0;
else
v[p][1] = 0, v[p][0] /= 2;
}
}
} else {
if((a[i] + b[i]) & 1) {
ans /= 2;
} else
rep(j, 2) v[(a[i] + b[i]) / 2][j] /= 2;
}
}
vv(mint, dp, n, 2);
if(mp.count(pii()))
dp[0][mp[pii()]] = ans;
else
dp[0][0] = dp[0][1] = ans;
rep(i, n - 1) {
auto f = [&](int i, int j) {
if(mp.count(pii(i, j)))
return vi{mp[pii(i, j)]};
else
return vi{0, 1};
};
auto x = f(i + 1, i), y = f(i, i + 1), z = f(i + 1, i + 1);
for(auto p : x)
for(auto q : y)
for(auto r : z) {
int t = p ^ q ^ r;
dp[i + 1][r] += dp[i][t] * v[i + 1][r];
}
}
cout << dp[n - 1][0] + dp[n - 1][1] << endl;
}
Submission Info
Submission Time |
|
Task |
F - Square |
User |
noimi |
Language |
C++ (GCC 9.2.1) |
Score |
900 |
Code Size |
19708 Byte |
Status |
AC |
Exec Time |
95 ms |
Memory |
18016 KB |
Compile Error
./Main.cpp:1: warning: ignoring #pragma region Macros [-Wunknown-pragmas]
1 | #pragma region Macros
|
./Main.cpp:253: warning: ignoring #pragma endregion [-Wunknown-pragmas]
253 | #pragma endregion
|
./Main.cpp: In function ‘Graph getG(int, int, bool, int)’:
./Main.cpp:186:16: warning: moving a local object in a return statement prevents copy elision [-Wpessimizing-move]
186 | return move(res);
| ~~~~^~~~~
./Main.cpp:186:16: note: remove ‘std::move’ call
./Main.cpp: In function ‘modular::modint<998244353> modular::inv(int)’:
./Main.cpp:308:19: warning: comparison of integer expressions of different signedness: ‘std::vector<modular::modint<998244353> >::size_type’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare]
308 | if(Inv.size() > n)
| ~~~~~~~~~~~^~~
./Main.cpp: In function ‘modular::modint<998244353> modular::prd(int)’:
./Main.cpp:317:19: warning: comparison of integer expressions of different signedness: ‘std::vector<modular::modint<998244353> >::size_type’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare]
317 | if(Prd.size() > n)
| ~~~~~~~~~~~^~~
./Main.cpp: In function ‘modular::modint<998244353> modular::invprd(int)’:
./Main.cpp:324:22: warning: comparison of integer expressions of different signedness: ‘std::vector<modular::modint<998244353> >::size_type’ {aka ‘long unsigned int’} and ‘int’ [-Wsign-compare]
324 | if(Invprd.size() > n)
| ~~~~~~~~~~~~~~^~~
./Main.cpp: In function ‘std::vector<modular::modint<998244353> > modular::mul(std::vector<modular::modint<998244353> >, const std::vector<modular::modint<998244353> >&)’:
./Main.cpp:9:35: warning: comparison of integer expressions of different signedness: ‘long long int’ and ‘std::vector<modular::modint<998244353> >::size_type’ {aka ‘long unsigned int’} [-Wsign-compare]
9 | #define rep(i, n) for(ll i = 0; i < n; ++i)
......
389 | rep(i, y.size()) z[i] = y[i];
| ...
Judge Result
Set Name |
Sample |
All |
Score / Max Score |
0 / 0 |
900 / 900 |
Status |
|
|
Set Name |
Test Cases |
Sample |
s1.txt, s2.txt, s3.txt, s4.txt, s5.txt |
All |
01.txt, 02.txt, 03.txt, 04.txt, 05.txt, 06.txt, 07.txt, 08.txt, 09.txt, 10.txt, 11.txt, 12.txt, 13.txt, 14.txt, 15.txt, 16.txt, 17.txt, 18.txt, 19.txt, 20.txt, 21.txt, 22.txt, 23.txt, 24.txt, 25.txt, 26.txt, 27.txt, 28.txt, 29.txt, 30.txt, 31.txt, 32.txt, 33.txt, 34.txt, 35.txt, 36.txt, 37.txt, 38.txt, 39.txt, 40.txt, 41.txt, 42.txt, 43.txt, 44.txt, 45.txt, 46.txt, 47.txt, 48.txt, 49.txt, 50.txt, 51.txt, 52.txt, 53.txt, 54.txt, 55.txt, 56.txt, 57.txt, 58.txt, 59.txt, 60.txt, 61.txt, 62.txt, 63.txt, 64.txt, 65.txt, 66.txt, 67.txt, 68.txt, 69.txt, 70.txt, 71.txt, 72.txt, 73.txt, 74.txt, 75.txt, 76.txt, 77.txt, 78.txt, 79.txt, 80.txt, 81.txt, 82.txt, 83.txt, 84.txt, 85.txt, 86.txt, 87.txt, 88.txt, s1.txt, s2.txt, s3.txt, s4.txt, s5.txt |
Case Name |
Status |
Exec Time |
Memory |
01.txt |
AC |
56 ms |
7804 KB |
02.txt |
AC |
51 ms |
7872 KB |
03.txt |
AC |
55 ms |
7848 KB |
04.txt |
AC |
53 ms |
8048 KB |
05.txt |
AC |
59 ms |
7988 KB |
06.txt |
AC |
53 ms |
8000 KB |
07.txt |
AC |
54 ms |
7856 KB |
08.txt |
AC |
52 ms |
7996 KB |
09.txt |
AC |
55 ms |
7868 KB |
10.txt |
AC |
52 ms |
7904 KB |
11.txt |
AC |
52 ms |
7916 KB |
12.txt |
AC |
56 ms |
7800 KB |
13.txt |
AC |
51 ms |
7968 KB |
14.txt |
AC |
54 ms |
7852 KB |
15.txt |
AC |
54 ms |
7856 KB |
16.txt |
AC |
53 ms |
7920 KB |
17.txt |
AC |
54 ms |
7980 KB |
18.txt |
AC |
53 ms |
7868 KB |
19.txt |
AC |
92 ms |
17896 KB |
20.txt |
AC |
90 ms |
18016 KB |
21.txt |
AC |
88 ms |
17988 KB |
22.txt |
AC |
94 ms |
17964 KB |
23.txt |
AC |
93 ms |
17904 KB |
24.txt |
AC |
89 ms |
17780 KB |
25.txt |
AC |
48 ms |
7252 KB |
26.txt |
AC |
38 ms |
7316 KB |
27.txt |
AC |
37 ms |
7324 KB |
28.txt |
AC |
31 ms |
7324 KB |
29.txt |
AC |
93 ms |
17960 KB |
30.txt |
AC |
95 ms |
17944 KB |
31.txt |
AC |
61 ms |
8724 KB |
32.txt |
AC |
59 ms |
8700 KB |
33.txt |
AC |
60 ms |
8720 KB |
34.txt |
AC |
60 ms |
8736 KB |
35.txt |
AC |
63 ms |
8592 KB |
36.txt |
AC |
58 ms |
8588 KB |
37.txt |
AC |
94 ms |
17892 KB |
38.txt |
AC |
91 ms |
17884 KB |
39.txt |
AC |
55 ms |
9828 KB |
40.txt |
AC |
57 ms |
9780 KB |
41.txt |
AC |
54 ms |
9668 KB |
42.txt |
AC |
56 ms |
9764 KB |
43.txt |
AC |
55 ms |
9804 KB |
44.txt |
AC |
57 ms |
9712 KB |
45.txt |
AC |
55 ms |
9708 KB |
46.txt |
AC |
54 ms |
9644 KB |
47.txt |
AC |
56 ms |
9800 KB |
48.txt |
AC |
53 ms |
9780 KB |
49.txt |
AC |
55 ms |
9768 KB |
50.txt |
AC |
52 ms |
9716 KB |
51.txt |
AC |
87 ms |
17944 KB |
52.txt |
AC |
85 ms |
18016 KB |
53.txt |
AC |
88 ms |
17768 KB |
54.txt |
AC |
82 ms |
17976 KB |
55.txt |
AC |
66 ms |
12292 KB |
56.txt |
AC |
67 ms |
12240 KB |
57.txt |
AC |
75 ms |
18016 KB |
58.txt |
AC |
76 ms |
17784 KB |
59.txt |
AC |
79 ms |
18000 KB |
60.txt |
AC |
75 ms |
18012 KB |
61.txt |
AC |
79 ms |
18016 KB |
62.txt |
AC |
75 ms |
17832 KB |
63.txt |
AC |
79 ms |
17780 KB |
64.txt |
AC |
78 ms |
17944 KB |
65.txt |
AC |
81 ms |
17832 KB |
66.txt |
AC |
83 ms |
17952 KB |
67.txt |
AC |
84 ms |
17976 KB |
68.txt |
AC |
79 ms |
18016 KB |
69.txt |
AC |
81 ms |
17984 KB |
70.txt |
AC |
82 ms |
18012 KB |
71.txt |
AC |
88 ms |
17880 KB |
72.txt |
AC |
93 ms |
17884 KB |
73.txt |
AC |
78 ms |
17828 KB |
74.txt |
AC |
74 ms |
17852 KB |
75.txt |
AC |
92 ms |
17780 KB |
76.txt |
AC |
91 ms |
17840 KB |
77.txt |
AC |
2 ms |
3600 KB |
78.txt |
AC |
2 ms |
3632 KB |
79.txt |
AC |
2 ms |
3648 KB |
80.txt |
AC |
2 ms |
3600 KB |
81.txt |
AC |
2 ms |
3520 KB |
82.txt |
AC |
2 ms |
3576 KB |
83.txt |
AC |
2 ms |
3604 KB |
84.txt |
AC |
2 ms |
3524 KB |
85.txt |
AC |
38 ms |
14156 KB |
86.txt |
AC |
43 ms |
14152 KB |
87.txt |
AC |
2 ms |
3648 KB |
88.txt |
AC |
2 ms |
3692 KB |
s1.txt |
AC |
3 ms |
3576 KB |
s2.txt |
AC |
2 ms |
3604 KB |
s3.txt |
AC |
3 ms |
3600 KB |
s4.txt |
AC |
2 ms |
3596 KB |
s5.txt |
AC |
40 ms |
14208 KB |