Contest Duration: ~ (local time) (120 minutes) Back to Home

Submission #2600652

Source Code Expand

Copy
```#include <bits/stdc++.h>
#include <sys/time.h>
using namespace std;

#define rep(i,n) for(long long i = 0; i < (long long)(n); i++)
#define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define fi first
#define se second
#define mt make_tuple
#define mp make_pair
template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }
template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>;
using ld = long double;  using vld = vector<ld>;
using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; }

inline void input(int &v){ v=0;char c=0;int p=1; while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();} while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();} v*=p; } // これを使うならば、tieとかを消して！！
template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) {  o << "(" << v.first << ", " << v.second << ")"; return o; }
template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{};
template<class Ch, class Tr, class Tuple, size_t... Is>
void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)), 0)...}; }
template<class Ch, class Tr, class... Args>
auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; }
ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; }
template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]";  return o; }
template <typename T> ostream &operator<<(ostream &o, const deque<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o << "]";  return o; }
template <typename T>  ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]";  return o; }
template <typename T>  ostream &operator<<(ostream &o, const unordered_set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]";  return o; }
template <typename T, typename U>  ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]";  return o; }
template <typename T, typename U, typename V>  ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]";  return o; }
vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; }
template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;}
template <typename T, typename S, typename U> ostream &operator<<(ostream &o, const priority_queue<T, S, U> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << " ";} return o; }
template <typename T> ostream &operator<<(ostream &o, const queue<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.front(); tmp.pop(); o << x << " ";} return o; }
template <typename T> ostream &operator<<(ostream &o, const stack<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << " ";} return o; }
template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;};
string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); }
void vizGraph(vvll& g, int mode = 0, string filename = "out.png") { ofstream ofs("./out.dot"); ofs << "digraph graph_name {" << endl; set<P> memo; rep(i, g.size())  rep(j, g[i].size()) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << "    " << i << " -> " << g[i][j] << (mode ? " [arrowhead = none]" : "")<< endl;  } ofs << "}" << endl; ofs.close(); system(((string)"dot -T png out.dot >" + filename).c_str()); }
size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various class
struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) * 1e-6; }
struct init_{init_(){ ios::sync_with_stdio(false); cin.tie(0); gettimeofday(&start, NULL); struct timeval myTime; struct tm *time_st; gettimeofday(&myTime, NULL); time_st = localtime(&myTime.tv_sec); srand(myTime.tv_usec); random_seed = RAND_MAX / 2 + rand() / 2; }} init__;
#define ldout fixed << setprecision(40)

#define EPS (double)1e-14
#define INF (ll)1e18
#define mo  (ll)(1e9+7)

/*****************/
// Dictionary
/*****************/
// Nはバケット数
template<int N> class FID {
static const int bucket = 512, block = 16;
// 整数iのpopcountをO(1)で求めるためのテーブル
// popcount[i] = __builtin_popcount(i), i<65536
static char popcount[];

// B[i]: s[0:512*i)のビット1の総数
int n, B[N/bucket+10];
// bs[i]: s[16*i:16*(i+1)]のビット列そのもの
unsigned short bs[N/block+10] = {};

// b[i]: s[i/32*512:i/32*512+i%32*32)のビット1の総数
// bs[i]を512bitずつリセットしながら、累積和を取ってる感じ。
unsigned short b[N/block+10] = {};

public:
FID(){}
FID(int n, bool s[]) : n(n) {
if(!popcount[1]) for (int i = 0; i < (1<<block); i++) popcount[i] = __builtin_popcount(i);

bs[0] = B[0] = b[0] = 0;
for (int i = 0; i < n; i++) {
if(i%block == 0) {
bs[i/block+1] = 0;
if(i%bucket == 0) {
B[i/bucket+1] = B[i/bucket];
b[i/block+1] = b[i/block] = 0;
}
else b[i/block+1] = b[i/block];
}
bs[i/block]   |= short(s[i])<<(i%block);
b[i/block+1]  += s[i];
B[i/bucket+1] += s[i];
}
if(n%bucket == 0) b[n/block] = 0;
}

// number of val in [0,r), O(1)
int count(bool val, int r) { return val? B[r/bucket]+b[r/block]+popcount[bs[r/block]&((1<<(r%block))-1)]: r-count(1,r); }
// number of val in [l,r), O(1)
int count(bool val, int l, int r) { return count(val,r)-count(val,l); }

// position of ith in val, 0-indexed, O(log n)
// 範囲外を示していたら-1を返す
int select(bool val, int i) {
if(i < 0 or count(val,n) <= i) return -1;
i++;
int lb = 0, ub = n, md;
while(ub-lb>1) {
md = (lb+ub)>>1;
if(count(val,md) >= i) ub = md;
else lb = md;
}
return ub-1;
}
int select(bool val, int i, int l) { return select(val,i+count(val,l)); }
bool operator[](int i) { return bs[i/block]>>(i%block)&1; }

void print(void) {
/*
rep(i, 1+(N-1)/bucket) {
cout << B[i] << " ";
}
cout << endl;
rep(i, 1+(N-1)/block) {
cout << b[i] << " ";
}
cout << endl;
*/
rep(i, 1+(N-1)/block) {
cout << bits_to_string(bs[i], (i != (N-1)/block ? 16 : N - (N-1)/block*block)) << " ";
}
cout << endl;
}
};
template<int N> char FID<N>::popcount[1<<FID<N>::block];

/*****************/
// Wavelet Matrix
/*****************/
// 長さNで、値域[0, m=2^D)の整数を管理する
//#define ENABLE_SUM
template<class T, int N, int D> class wavelet {
int n, zs[D];
FID<N> dat[D];
public:
#ifdef ENABLE_SUM
T raw_data[D+1][N] = {};
T sum_data[D+1][N+1] = {};
wavelet(int n, T seq[]) : n(n) {
T l[N] = {}, r[N] = {};
bool b[N] = {};
memcpy(raw_data[0], seq, sizeof(T)*n);
for (int d = 0; d < D; d++) {
int lh = 0, rh = 0;
for (int i = 0; i < n; i++) {
b[i] = (raw_data[d][i]>>(D-d-1))&1;
if(b[i]) r[rh++] = raw_data[d][i];
else l[lh++] = raw_data[d][i];
}
dat[d] = FID<N>(n,b);
zs[d] = lh;
swap(l,raw_data[d+1]);
memcpy(raw_data[d+1]+lh, r, rh*sizeof(T));
}
rep(d, D+1) rep(i, N) sum_data[d][i+1] = sum_data[d][i] + raw_data[d][i];
}
// 深さdでの列の[l, r)での累積和を求める
T getSum(int d, int l, int r) {
return sum_data[d][r] - sum_data[d][l];
}
// get sum of elements in [l,r) in [a,b)
// O(log m)
T sum_dfs(int d, int l, int r, T val, T a, T b) {
// Wavelet Matrixの深さdで、
// [l, r)が[val, nv) = [val, val+(1ll<<(D-d)))の値域を表現している時、
// [a, b)の値域のものの和は？

if(l == r) return 0; // valは無いので0を返す
if(d == D) return (a <= val and val < b)? (r-l)*val: 0; // 深さDでは全部の値が同じなので、そのままかけて返す

T nv = 1ULL<<(D-d-1)|val, nnv = ((1ULL<<(D-d-1))-1)|nv;
if(nnv < a or b <= val) // どんなに1を選んでもaに満たなかったり、すでに最大を超えていたら0
return 0;
if (a <= val and nnv < b) // これからどう選んでも a <= [l, r) < bの場合、累積和を返す
return getSum(d, l, r);

int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
return sum_dfs(d+1,l-lc,r-rc,val,a,b)+ sum_dfs(d+1,lc+zs[d],rc+zs[d],nv,a,b);
}
T sum(int l, int r, T a, T b) { return sum_dfs(0,l,r,0,a,b); }
#else
wavelet(int n, T seq[]) : n(n) {
T f[N], l[N], r[N];
bool b[N];
memcpy(f, seq, sizeof(T)*n);
for (int d = 0; d < D; d++) {
int lh = 0, rh = 0;
for (int i = 0; i < n; i++) {
bool k = (f[i]>>(D-d-1))&1;
if(k) r[rh++] = f[i];
else l[lh++] = f[i];
b[i] = k;
}
dat[d] = FID<N>(n,b);
zs[d] = lh;
swap(l,f);
memcpy(f+lh, r, rh*sizeof(T));
}
}
#endif
void print(void) {
rep(i, D) cout << zs[i] << " "; cout << endl;
rep(i, D) dat[i].print();
/*
cout << "Raw" << endl;
rep(d, D+1) { rep(i, N) cout << raw_data[d][i] << " "; cout << endl; }
cout << "Sum" << endl;
rep(d, D+1) { rep(i, N+1) cout << sum_data[d][i] << " "; cout << endl; }
*/
}

// get, []: i番目の要素
// O(1)
T get(int i) {
T ret = 0;
bool b;
for (int d = 0; d < D; d++) {
ret <<= 1;
b = dat[d][i];
ret |= b;
i = dat[d].count(b,i)+b*zs[d];
}
return ret;
}
T operator[](int i) { return get(i); }

// rank: 区間[0,r)にあるvalの個数
// O(log m)
int count(T val, int l, int r) {
for (int d = 0; d < D; d++) {
// ここで[l, r)にxのd桁目までが全て入っていることを保証(d>0)
bool b = (val>>(D-d-1))&1;
l = dat[d].count(b,l)+b*zs[d];
r = dat[d].count(b,r)+b*zs[d];
}
return r-l;
}
int count(T val, int r) { return count(val,0,r); }

// select: i番目のvalの位置
// O(log m log log m)
int select(T val, int k) {
int ls[D], rs[D], l = 0, r = n;
for (int d = 0; d < D; d++) {
ls[d] = l; rs[d] = r;
bool b = val>>(D-d-1)&1;
l = dat[d].count(b,l)+b*zs[d];
r = dat[d].count(b,r)+b*zs[d];
}
for (int d = D-1; d >= 0; d--) {
bool b = val>>(D-d-1)&1;
k = dat[d].select(b,k,ls[d]);
if(k >= rs[d] or k < 0) return -1;
k -= ls[d];
}
return k;
}
int select(T val, int k, int l) { return select(val,k+count(val,l)); }

// maximum: 区間[l,r)で大きい順にk個
// O(k log m)
void list_max_dfs(int d, int l, int r, int &k, T val, vector<T> &vs) {
if(l >= r or !k) return;
if(d == D) {
while(l++ < r and k > 0) vs.push_back(val), k--;
return;
}
int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
// if min, change this order
list_max_dfs(d+1, lc+zs[d], rc+zs[d], k, 1ULL<<(D-d-1)|val,vs);
list_max_dfs(d+1, l-lc, r-rc, k, val, vs);
}
vector<T> list_max(int l, int r, int k) {
if (r-l < k) k = r-l;
if(k < 0) return {};
vector<T> ret;
list_max_dfs(0,l,r,k,0,ret);
return ret;
}

// 添字[l, r)の要素で、値が[a, b)のもののうち最大値を求める
// valは上からd bit決めて他0を埋めた時の値。
//
// O(log m)
T rangemax_dfs(int d, int l, int r, T val, T a, T b) {
if(r-l <= 0 or val >= b) return -1;
if(d == D) return val>=a? val: -1;
int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
T ret = rangemax_dfs(d+1, lc+zs[d], rc+zs[d], 1ULL<<(D-d-1)|val, a, b);
if(~ret) return ret; // 1側を見て見つかったならそれに越したことはない
return rangemax_dfs(d+1, l-lc, r-rc, val, a, b); // なければ0側を見る
}
T rangemax(int l, int r, T a, T b) { return rangemax_dfs(0,l,r,0,a,b); }

// k is 0-indexed!!!!
// quantile: 区間[l,r)でk番目に大きい数
// O(log m)
T quantile(int l, int r, int k) {
if(r-l <= k or k < 0) return -1;
T ret = 0;
for (int d = 0; d < D; d++) {
int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
// lc - rc = [l, r)で立っている1の数
if(rc-lc > k) { // 1の数にkが収まっていれば
l = lc+zs[d], r = rc+zs[d]; // 1側に遷移
ret |= 1ULL<<(D-d-1);
} else { // 0側ならば
k -= rc-lc; // 1側にあった数だけkを削って次へ
l -= lc, r -= rc;
}
}
return ret;
}
T min(int l, int r) { return quantile(l, r, 0); }
T max(int l, int r) { return quantile(l, r, r-l-1); }

// freq_list: 区間[l,r)で値が[lb,ub)になる値とその出現回数の組のリスト
// O(k log m), kはヒット数
void list_freq_dfs(int d, int l, int r, T val, T a, T b, vector<pair<T,int>> &vs) {
if(val >= b or r-l <= 0) return;
if(d == D) {
if(a <= val) vs.push_back(make_pair(val,r-l));
return;
}
T nv = val|(1LL<<(D-d-1)), nnv = nv|(((1LL<<(D-d-1))-1));
if(nnv < a) return;
int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
list_freq_dfs(d+1,l-lc,r-rc,val,a,b,vs);
list_freq_dfs(d+1,lc+zs[d],rc+zs[d],nv,a,b,vs);
}
vector<pair<T,int>> list_freq(int l, int r, T a, T b) {
vector<pair<T,int>> ret;
list_freq_dfs(0,l,r,0,a,b,ret);
return ret;
}

// get_rect: 区間[l,r)で値が[lb,ub)になる要素の位置とその値の組(つまり矩形内にある点の座標)のリスト
// O(k log m), kはヒット数
vector<pair<int,T>> get_rect(int l, int r, T a, T b) {
vector<pair<T,int>> res = list_freq(l,r,a,b);
vector<pair<int,T>> ret;
for(auto &e: res)
for (int i = 0; i < e.second; i++)
ret.push_back(make_pair(select(e.first,i,l), e.first));
return ret;
}

// number of elements in [l,r) in [a,b)
// O(log m)
ll freq_dfs(int d, int l, int r, T val, T a, T b) {
if(l == r) return 0;
if(d == D) return (a <= val and val < b)? r-l: 0;
T nv = 1ULL<<(D-d-1)|val, nnv = ((1ULL<<(D-d-1))-1)|nv;
if(nnv < a or b <= val) return 0;
if(a <= val and nnv < b) return r-l;
int lc = dat[d].count(1,l), rc = dat[d].count(1,r);
return freq_dfs(d+1,l-lc,r-rc,val,a,b)+
freq_dfs(d+1,lc+zs[d],rc+zs[d],nv,a,b);
}
ll freq(int l, int r, T a, T b) { return freq_dfs(0,l,r,0,a,b); }

// TODO
// 普通に
// https://www.slideshare.net/pfi/ss-15916040
// rangemaxk, rangemink, prevvalue, nextvalue, intersectを実装するのが良さそう
};

int main(void) {
ll n,d; cin >> n>>d;
vll a(n); cin >> a;

vll mink(n);
// それぞれからDよりあととなる最小
rep(i, n) {
mink[i] = lower_bound(all(a), a[i] + d + 1) - a.begin();
}

// それぞれからD以下前となる最小
vll mini(n);
rep(j, n) {
mini[j] = lower_bound(all(a), a[j] - d) - a.begin();
}
/*
cout << mink << endl;
cout << mini << endl;
*/

{

ll warray[100010] = {};
rep(i, n) {
warray[i] = mink[i];
}
wavelet<ll, 100010, 32> w(100010, warray);

vll minks(n+1);
rep(i, n) {
minks[i+1] = minks[i] + mink[i];
}

ll ret = 0;
rep(j, n) {
// mini[j] <= i < jなるiについて、
// mink[i] <= x < mink[j]となるようなxの個数の数え上げ
//            cout << mini[j] << " " << j << " : " << 0 << " " << mink[j] << endl;
ll m = w.freq(mini[j], j, 0, mink[j]);
//            cout << m << endl;
ll tmp = m * mink[j] - (minks[mini[j]+m] - minks[mini[j]]);
/*
rep(i, j) if (mini[j] <= i) {
tmp += max(0ll, mink[j] - mink[i]);
}
*/
//            cout << j << " " << tmp << endl;
ret += tmp;
}
cout << ret << endl;
}
/*
{
ll ret = 0;
rep(j, n) {
// mini[j] <= i < jなるiについて、
// mink[i] <= x < mink[j]となるようなxの個数の数え上げ
ll tmp = 0;
rep(i, j) if (mini[j] <= i) {
tmp += max(0ll, mink[j] - mink[i]);
}
cout << j << " " << tmp << endl;
ret += tmp;
}
cout << ret << endl;
}
*/

return 0;
}
```

#### Submission Info

Submission Time 2018-06-02 22:04:17+0900 C - 徒歩圏内 hamko C++14 (GCC 5.4.1) 400 19275 Byte AC 95 ms 7548 KB

#### Compile Error

```./Main.cpp: In function ‘void vizGraph(vvll&, int, std::string)’:
./Main.cpp:41:478: warning: ignoring return value of ‘int system(const char*)’, declared with attribute warn_unused_result [-Wunused-result]
void vizGraph(vvll& g, int mode = 0, string filename = "out.png") { ofstream ofs("./out.dot"); ofs << "digraph graph_name {" << endl; set<P> memo; rep(i, g.size())  rep(j, g[i].size()) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << "    " << i << " -> " << g[i][j] << (mode ? " [arrowhead = none]" : "")<< endl;  } ofs << "}" << endl; ofs.close(); system(((string)"dot -T png out.dot >" + filename).c_str()); }
...```

#### Judge Result

Set Name Score / Max Score Test Cases
Sample 0 / 0 sample-01.txt, sample-02.txt, sample-03.txt, sample-04.txt
All 400 / 400 01.txt, 02.txt, 03.txt, 04.txt, 05.txt, 06.txt, 07.txt, 08.txt, 09.txt, 10.txt, 11.txt, 12.txt, sample-01.txt, sample-02.txt, sample-03.txt, sample-04.txt
Case Name Status Exec Time Memory
01.txt 95 ms 7292 KB
02.txt 43 ms 7164 KB
03.txt 90 ms 7548 KB
04.txt 94 ms 7164 KB
05.txt 85 ms 7164 KB
06.txt 92 ms 7420 KB
07.txt 89 ms 7164 KB
08.txt 81 ms 6780 KB
09.txt 21 ms 3580 KB
10.txt 88 ms 7420 KB
11.txt 94 ms 7164 KB
12.txt 84 ms 7292 KB
sample-01.txt 21 ms 3580 KB
sample-02.txt 21 ms 3580 KB
sample-03.txt 21 ms 3580 KB
sample-04.txt 21 ms 3580 KB