Submission #457845


Source Code Expand

Copy
import math
def gcd(m, n):
    if m<n:
        return gcd(n, m)
    r = m%n
    return gcd(n, r) if r else n
x, y = map(int, raw_input().split('/'))
g = gcd(x, y)
x /= g; y /= g
exist = False
pmin = int((2*x-y + math.sqrt((y-2*x)**2 + 8*y**2)) / (2*y**2))
pmax = int((2*x+y)/y**2)
for p in xrange(pmin,pmax+1):
    n = p*y
    m = p*(y*(p*y+1) - 2*x)/2
    if 1<=m<=n:
        print n, m
        exist = True
if not exist:
    print "Impossible"

Submission Info

Submission Time
Task C - 平均値太郎の憂鬱 ( The melancholy of Taro Heikinchi )
User yaketake08
Language Python (2.7.3)
Score 100
Code Size 466 Byte
Status
Exec Time 63 ms
Memory 3584 KB

Judge Result

Set Name Score / Max Score Test Cases
All 100 / 100 00_killer.txt, 00_max.txt, 00_min.txt, 00_min2.txt, 00_sample_01.txt, 00_sample_02.txt, 00_sample_03.txt, 00_sample_04.txt, 01_rnd_00.txt, 01_rnd_01.txt, 01_rnd_02.txt, 01_rnd_03.txt, 01_rnd_04.txt, 01_rnd_05.txt, 01_rnd_06.txt, 01_rnd_07.txt, 01_rnd_08.txt, 01_rnd_09.txt, 01_rnd_10.txt, 01_rnd_11.txt, 01_rnd_12.txt, 01_rnd_13.txt, 01_rnd_14.txt, 01_rnd_15.txt, 01_rnd_16.txt, 01_rnd_17.txt, 01_rnd_18.txt, 01_rnd_19.txt, 02_rnd2_00.txt, 02_rnd2_01.txt, 02_rnd2_02.txt, 02_rnd2_03.txt, 02_rnd2_04.txt, 02_rnd2_05.txt, 02_rnd2_06.txt, 02_rnd2_07.txt, 02_rnd2_08.txt, 02_rnd2_09.txt, 02_rnd2_10.txt, 02_rnd2_11.txt, 02_rnd2_12.txt, 02_rnd2_13.txt, 02_rnd2_14.txt, 02_rnd2_15.txt, 02_rnd2_16.txt, 02_rnd2_17.txt, 02_rnd2_18.txt, 02_rnd2_19.txt, 03_smallrnd_00.txt, 03_smallrnd_01.txt, 03_smallrnd_02.txt, 03_smallrnd_03.txt, 03_smallrnd_04.txt, 03_smallrnd_05.txt, 03_smallrnd_06.txt, 03_smallrnd_07.txt, 03_smallrnd_08.txt, 03_smallrnd_09.txt, 04_primes_01.txt, 04_primes_02.txt
Case Name Status Exec Time Memory
00_killer.txt 58 ms 3564 KB
00_max.txt 56 ms 3560 KB
00_min.txt 56 ms 3564 KB
00_min2.txt 57 ms 3568 KB
00_sample_01.txt 56 ms 3564 KB
00_sample_02.txt 57 ms 3576 KB
00_sample_03.txt 55 ms 3572 KB
00_sample_04.txt 54 ms 3576 KB
01_rnd_00.txt 54 ms 3572 KB
01_rnd_01.txt 55 ms 3572 KB
01_rnd_02.txt 56 ms 3576 KB
01_rnd_03.txt 56 ms 3576 KB
01_rnd_04.txt 54 ms 3568 KB
01_rnd_05.txt 55 ms 3564 KB
01_rnd_06.txt 54 ms 3424 KB
01_rnd_07.txt 55 ms 3576 KB
01_rnd_08.txt 55 ms 3572 KB
01_rnd_09.txt 56 ms 3572 KB
01_rnd_10.txt 56 ms 3572 KB
01_rnd_11.txt 56 ms 3572 KB
01_rnd_12.txt 57 ms 3564 KB
01_rnd_13.txt 56 ms 3576 KB
01_rnd_14.txt 56 ms 3564 KB
01_rnd_15.txt 58 ms 3424 KB
01_rnd_16.txt 58 ms 3444 KB
01_rnd_17.txt 56 ms 3564 KB
01_rnd_18.txt 56 ms 3572 KB
01_rnd_19.txt 57 ms 3564 KB
02_rnd2_00.txt 57 ms 3564 KB
02_rnd2_01.txt 56 ms 3560 KB
02_rnd2_02.txt 56 ms 3572 KB
02_rnd2_03.txt 54 ms 3584 KB
02_rnd2_04.txt 55 ms 3568 KB
02_rnd2_05.txt 56 ms 3568 KB
02_rnd2_06.txt 56 ms 3568 KB
02_rnd2_07.txt 55 ms 3564 KB
02_rnd2_08.txt 54 ms 3572 KB
02_rnd2_09.txt 55 ms 3580 KB
02_rnd2_10.txt 56 ms 3428 KB
02_rnd2_11.txt 55 ms 3564 KB
02_rnd2_12.txt 55 ms 3572 KB
02_rnd2_13.txt 55 ms 3576 KB
02_rnd2_14.txt 55 ms 3564 KB
02_rnd2_15.txt 57 ms 3424 KB
02_rnd2_16.txt 56 ms 3572 KB
02_rnd2_17.txt 56 ms 3568 KB
02_rnd2_18.txt 56 ms 3564 KB
02_rnd2_19.txt 59 ms 3568 KB
03_smallrnd_00.txt 59 ms 3564 KB
03_smallrnd_01.txt 57 ms 3572 KB
03_smallrnd_02.txt 57 ms 3572 KB
03_smallrnd_03.txt 57 ms 3568 KB
03_smallrnd_04.txt 57 ms 3576 KB
03_smallrnd_05.txt 58 ms 3420 KB
03_smallrnd_06.txt 57 ms 3568 KB
03_smallrnd_07.txt 57 ms 3564 KB
03_smallrnd_08.txt 57 ms 3560 KB
03_smallrnd_09.txt 63 ms 3440 KB
04_primes_01.txt 57 ms 3568 KB
04_primes_02.txt 55 ms 3572 KB